Differential effects of working memory load on priming and recognition of real images

Abstract

Several studies have explored the effects of divided attention on priming, but little is known about the impact of working memory load on implicit visual memory. The aim of this study was to determine whether there are differential effects of working memory load on a visual priming task compared to a recognition task. In the encoding phase, participants were presented with real-object pictures and asked to classify them semantically. At retrieval, 40 studied and 40 new images were presented (partially masked) for 100 ms, and participants had to identify the object. Each trial was immediately followed by a recognition test, in which the unmasked image was shown again, and participants had to indicate whether it had been presented at encoding or not. Regarding working memory load, participants performed a task in which a load was imposed in half of the trials. Twenty-four participants concurrently performed an articulatory suppression task, another group of 24 subjects performed an executive demanding task, and a third group of 24 participants performed a spatial tapping task. Working memory load failed to diminish performance on both priming and recognition tests in the articulatory suppression condition. However, the backward counting and the tapping tasks influenced recognition, rather than priming. The relative pattern of backward counting effects on recognition and priming were then broadly replicated in a follow-up experiment using an adapted priming task (N = 24). Results suggest that a concurrent load has a more robust effect on recognition than on priming, especially when the working memory task is executively demanding.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Bayesian paired-samples t-tests were applied using non-directional alternative hypotheses. However, as directional hypotheses might be considered more appropriate for the effects of WM load, additional Bayesian t-tests were also carried out using this approach (with no task > task as the alternative hypothesis). These analyses produced evidence supporting the same overall patterns of effects (backward counting, BF10= 299, spatial tapping, BF10= 279, articulatory suppression, BF10= .32).

  2. 2.

    Directional Bayesian paired-samples t-tests were also carried out for each of these comparisons. As with the non-directional analyses, these indicated strong support for an effect of backward counting on recognition, BF10 = 499, and indeterminate evidence for the null versus the alternative hypothesis in terms of the effect on priming, BF10 = 1.80. Finally, based on the outcomes of Experiment 1, the direct comparison of no-task versus task difference scores on recognition versus priming was also analyzed using a directional (effect on recognition > effect on priming) alternative hypothesis, again producing evidence for a larger effect on recognition, BF10 = 8.72.

References

  1. Allen, R. J., Havelka, J., Falcon, T., Evans, S. & Darling, S. (2015). Modality specificity and integration in working memory: Insights from visuospatial bootstrapping. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 820-30. https://doi.org/10.1037/xlm0000058.

    Article  PubMed  Google Scholar 

  2. Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2009). Cross-modal binding and working memory. Visual Cognition, 17(1-2), 83-102.

    Article  Google Scholar 

  3. Allen, R. J., Hitch, G. J., Mate, J., & Baddeley, A. D. (2012). Feature binding and attention in working memory: A resolution of previous contradictory findings. Quarterly Journal of Experimental Psychology, 65(12), 2369–2383. doi: https://doi.org/10.1080/17470218.2012.687384.

    Article  Google Scholar 

  4. Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology (Vol. 1, pp. 243–293). San Francisco: Freeman.

  5. Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1-29.

    Article  Google Scholar 

  6. Baddeley, A. D. (1986). Working Memory. Oxford, UK: Oxford University Press

    Google Scholar 

  7. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.

  8. Baddeley, A.D., Hitch, G.J., & Allen, R.J. (2020). A multicomponent model of working memory. In R.H. Logie, V. Camos, & N. Cowan (Eds). Working memory: State-of-the science. Oxford: Oxford University Press.

    Google Scholar 

  9. Baqués, J., Sáiz, D. & Bowers, J. S. (2004). Effects of working memory load on long-term word priming. Memory, 12(3), 301-313. doi:https://doi.org/10.1080/09658210244000469

    Article  PubMed  Google Scholar 

  10. Barchard, K. A. (2015). Null hypothesis significance testing does not show equivalence. Analysis of Social Issues and Public Policy, 15(1), 418–421. doi: https://doi.org/10.1111/asap.12095

    Article  Google Scholar 

  11. Berry, C. J., Henson, R. N. A. & Shanks, D. R. (2006). On the relationship between repetition priming and recognition memory: Insights from a computational model. Journal of Memory and Language 55, (4) 515–533. doi: https://doi.org/10.1016/j.jml.2006.08.008

    Article  Google Scholar 

  12. Berry, C. J., Kessels, R. P. C., Wester, A. J. & Shanks, D. R. (2014). A single-system model predicts recognition memory and repetition priming in amnesia. The Journal of Neuroscience 34(33): 10963-10974 https://doi.org/10.1523/JNEUROSCI.0764-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berry, C. J., Ward, E. V., & Shanks, D. R. (2017). Does study duration have opposite effects on recognition and repetition priming? Journal of Memory and Language, 97, 154–174. doi: https://doi.org/10.1016/j.jml.2017.07.004

    Article  Google Scholar 

  14. Buchner, A., & Wippich, W. (2000). On the reliability of implicit and explicit memory measures. Cognitive Psychology, 40, 227–259.

    Article  Google Scholar 

  15. Cabeza, R., & Moscovitch, M. (2013). Memory systems, processing modes, and components: Functional neuroimaging evidence. Perspectives on Psychological Science, 8(1) 49-55. doi: https://doi.org/10.1177/1745691612469033

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cocchini, G., Logie, R. H., Della Sala, S., MacPherson, S. E., & Baddeley, A. D. (2002). Concurrent performance of two memory tasks: Evidence for domain-specific working memory systems. Memory & Cognition, 30, 1086–1095.

    Article  Google Scholar 

  17. Conway, A. R. A., Tuholski, S. E., Shisler, R. J., & Engle, R.W. (1999). The effect of memory load on negative priming: An individual differences investigation. Memory & Cognition, 27(6), 1042-1050.

    Article  Google Scholar 

  18. Craik, F. I., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125(2), 159–80.

    Article  Google Scholar 

  19. Engle, R. W., Conway, A. R. A., Tuholski, S. W., & Shisler, R. J. (1995). Resource account of inhibition. Psychological Science, 6(2),122-125. doi: https://doi.org/10.1111/j.1467-9280.1995.tb00318.x

    Article  Google Scholar 

  20. Evans, K. K., & Baddeley, A. (2018). Intention, attention and long-term memory for visual scenes: It all depends on the scenes. Cognition, 180, 24–37. doi: https://doi.org/10.1016/j.cognition.2018.06.022

    Article  PubMed  Google Scholar 

  21. Farmer, E. W., Berman, J. V., & Fletcher, Y. L. (1986). Evidence for a visuo-spatial scratch-pad in working memory. The Quarterly Journal of Experimental Psychology Section A, 38(4), 675-688.

    Article  Google Scholar 

  22. Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(3), 501–518. doi:https://doi.org/10.1037//0278-7393.11.3.501

    Article  PubMed  Google Scholar 

  23. Heyman, T., Bruninx, A., Hutchison, K. A., & Storms, G. (2018). The (un)reliability of item-level semantic priming effects. Behavior Research Methods. https://doi.org/10.3758/s13428-018-1040-9.

  24. Heyman, T., Goossens, K., Hutchison, K. A., & Storms, G. (2017). Does a working memory load really influence semantic priming? A self-replication attempt. Collabra: Psychology, 3(1), 18. DOI: https://doi.org/10.1525/collabra.96

    Article  Google Scholar 

  25. Heyman, T., Van Rensbergen, B., Storms, G., Hutchison, K. A., & De Deyne, S. (2015). The influence of working memory load on semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 911–920. doi: https://doi.org/10.1037/xlm0000050

    Article  PubMed  Google Scholar 

  26. Ishihara, T. (2004). Ishihara’s test for colour deficiency. 38 plates edition. Tokyo: Kanehara Trading Inc.

    Google Scholar 

  27. Jacoby, L.L. (1983). Remembering the data: Analysing interactive processes in reading. Journal of Verbal Learning and Verbal Behavior, 22, 485-508. doi: https://doi.org/10.1016/S0022-5371(83)90301-8

    Article  Google Scholar 

  28. Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110(3), 306–340. doi: https://doi.org/10.1037/0096-3445.110.3.306

    Article  Google Scholar 

  29. JASP Team. (2019). JASP (version 0.11.1) [Computer software].

  30. Kemps, E., Szmalec, A., Vandierendonck, A., & Crevits, L. (2005). Visuo-spatial processing in Parkinson's disease: evidence for diminished visuo-spatial sketch pad and central executive resources. Parkinsonism & Related Disorders, 11(3), 181–186. doi: https://doi.org/10.1016/j.parkreldis.2004.10.010

  31. Light, L. L., & La Voie, D. (1993). Direct and indirect measures of memory in old age. In P. Graf & M. E. J. Masson (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 207-230). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  32. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and their conjunctions. Nature, 390, 279–281. doi: https://doi.org/10.1038/36846

    Article  PubMed  Google Scholar 

  33. Luck, S. & Hollingworth, A. (2008). Visual memory. New York: Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780195305487.001.0001

  34. Mandler, G. (1989). Memory: Conscious and unconscious. In P. R. Solomon, G. R. Goethals, C. M. Kelley, B. R. Stephens (Eds.). Memory: Interdisciplinary approaches. New York: Springer.

    Google Scholar 

  35. Mate, J., Allen, R. J., & Baqués, J. (2012). What you say matters: Exploring visual-verbal interactions in visual working memory. The Quarterly Journal of Experimental Psychology, 65(3), 395–400. doi: https://doi.org/10.1080/17470218.2011.644798

    Article  PubMed  Google Scholar 

  36. Meier, B., & Perrig, W.J. (2000). Low reliability of perceptual priming: Its impact on experimental and individual difference findings. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 53A, 211– 233.

    Article  Google Scholar 

  37. Morey, C. C., & Cowan, N. (2004). When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin & Review, 11(2), 296–301. doi: https://doi.org/10.1037/0278-7393.31.4.703

    Article  Google Scholar 

  38. Moscovitch, M., Goshen-Gottstein, Y., & Vriezen, E. (1994). Memory without conscious recollection: A tutorial review from a neuropsychological perspective. In C. Umilta & M. Moscovitch (Eds.), Attention and performance (Vol. 15, pp. 619–660). Cambridge: MIT Press.

  39. Mulder, J. & Wagenmaker, E. (2016). Editors’ introduction to the special issue “Bayes factors for testing hypotheses in psychological research: Practical relevance and new developments”. Journal of Mathematical Psychology, 72, 1–5. doi: https://doi.org/10.1016/j.jmp.2016.01.002

    Article  Google Scholar 

  40. Mulligan, N. W. (1998). The role of attention during encoding in implicit and explicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 27–47. doi: https://doi.org/10.1037/0278-7393.24.1.27

    Article  PubMed  Google Scholar 

  41. Mulligan, N. W. (2002). Attention and perceptual implicit memory: Effects of selective versus divided attention and number of visual objects. Psychological Research, 66, 157–165. doi: https://doi.org/10.1007/s00426-002-0089-2

    Article  PubMed  Google Scholar 

  42. Mulligan, N. W. (2003). Effects of cross-modal and intramodal division of attention on perceptual implicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 262–276. doi: https://doi.org/10.1037/0278-7393.29.2.262

    Article  PubMed  Google Scholar 

  43. Mulligan, N.W. & Dew, I.T.Z. (2009). Generation and perceptual implicit memory: Different generation tasks produce different effects on perceptual priming. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1522–1538. doi: https://doi.org/10.1037/a0017398.

    Article  PubMed  Google Scholar 

  44. Mulligan, N. W. & Hartman, M. (1996). Divided attention and indirect memory tests. Memory and Cognition 24, 453–465. doi: https://doi.org/10.3758/BF03200934

    Article  PubMed  Google Scholar 

  45. Mulligan, N. W., & Hornstein, S. L. (2000). Attention and perceptual priming in the perceptual identification task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 626–37. doi: https://doi.org/10.1037//0278-7393.26.3.626

    Article  PubMed  Google Scholar 

  46. Mulligan, N. W., & Peterson, D. (2008). Attention and implicit memory in the category-verification and lexical decision tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 662–679. https://doi.org/10.1037/0278-7393.34.3.662

    Article  PubMed  Google Scholar 

  47. Musen, G., & Treisman, A. (1990). Implicit and explicit memory for visual patterns. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 127–137.

    PubMed  Google Scholar 

  48. Newell, B. R., & Andrews, S. (2004). Levels of processing effects on implicit and explicit memory tasks: Using question position to investigate the lexical-processing hypothesis. Experimental Psychology, 51(2), 132–144. doi: https://doi.org/10.1027/1618-3169.51.2.132

    Article  PubMed  Google Scholar 

  49. Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611–646. doi: https://doi.org/10.1037/0033-295X.110.4.611

    Article  PubMed  Google Scholar 

  50. Parkin, A. J., Reid, T. K., & Russo, R. (1990). On the differential nature of implicit and explicit memory. Memory and Cognition, 18, 507–514. doi: https://doi.org/10.3758/BF03198483

    Article  PubMed  Google Scholar 

  51. Pixabay (2018). Retrieved from https://pixabay.com

  52. Rajaram, S. (2007). Attentional requirements of perceptual implicit memory. In Nairne, J. S. (Ed.) The foundations of remembering: Essays in honor of Henry L. Roediger III. New York: Psychology Press.

    Google Scholar 

  53. Reder, L. M., Park, H., & Kieffaber, P. D. (2009). Memory systems do not divide on consciousness: Reinterpreting memory in terms of activation and binding. Psychological Bulletin, 135(1), 23-49. doi: https://doi.org/10.1037/a0013974

    Article  PubMed  PubMed Central  Google Scholar 

  54. Richardson-Klavehn, A., & Bjork, R. A. (1988). Measures of memory. In M. R. Rosenzweig & L. W. Porter (Eds.), Annual review of psychology. Annual review of psychology (Vol. 39, pp. 475–543). Palo Alto, CA: Annual Reviews.

  55. Robbins, T. W., Anderson, E. J., Barker, D. R., Bradley, A. C., Fearnyhough, C., Henson, R., … Baddeley, A. D. (1996). Working memory in chess. Memory and Cognition, 24(1), 83–93. doi: https://doi.org/10.3758/BF03197274

    Article  PubMed  Google Scholar 

  56. Roediger, H., & Srinivas, K. (1993) Specificity of operations in perceptual priming. P. Graf, & Masson, M. (Eds.) Implicit memory: New directions in cognition, development and neuropsychology. (pp. 17-48). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  57. Roediger, H. L. (1990). Implicit memory: Retention without remembering. American Psychologist, 45(9), 1043–1056. doi: https://doi.org/10.1037/0003-066X.45.9.1043

    Article  PubMed  Google Scholar 

  58. Sabb, F. W., Bilder, R. M., Chou, M., & Bookheimer, S. Y. (2007). Working memory effects on semantic processing: Priming differences in pars orbitalis. NeuroImage, 37, 311–322. doi:https://doi.org/10.1016/j.neuroimage.2007.04.050

    Article  PubMed  Google Scholar 

  59. Schacter, D. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(3), 501–518.

    Google Scholar 

  60. Schacter, D. L. (1992). Priming and multiple memory systems: Perceptual mechanisms of implicit memory. Journal of Cognitive Neuroscience, 4(3), 244-256. doi: https://doi.org/10.1162/jonc.1992.4.3.244

    Article  PubMed  Google Scholar 

  61. Sense, F., Morey, C. C., Prince, M., Heathcote, A., & Morey, R. D. (2017). Opportunity for verbalization does not improve visual change detection performance: A state-trace analysis. Behavior Research Methods, 49(3), 853-862.

    Article  Google Scholar 

  62. Shanks, D. R., & Berry, C. J. (2012). Are there multiple memory systems? Tests of models of implicit and explicit memory. The Quarterly Journal of Experimental Psychology, 65(8), 1449–1474. doi: https://doi.org/10.1080/17470218.2012.691887

    Article  PubMed  Google Scholar 

  63. Shimamura, A. P. (1993). Neuropsychological analyses of implicit memory: History, methodology and theoretical interpretations. In P. Graf & M. E. J. Masson (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 265-285). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  64. Smyth, M. M., & Pelky, P. L. (1992). Short-term retention of spatial information. British Journal of Psychology, 83(3), 359-374.

    Article  Google Scholar 

  65. Soldan, A., Mangels, J. A. & Cooper, L. (2008). Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects. Memory, 16(8), 973-895. doi: https://doi.org/10.1080/09658210802360595

    Article  Google Scholar 

  66. Spataro, P., Cestari, V. & Rossi-Arnaud, C. (2011). The relationship between divided attention and implicit memory: A meta-analysis. Acta Psychologica, 136, 329–339. doi: https://doi.org/10.1016/j.actpsy.2010.12.007

    Article  PubMed  Google Scholar 

  67. Squire, L. R. (2009) Memory and brain systems: 1969–2009. Journal of Neuroscience, 29, 12711–12716. doi: https://doi.org/10.1523/jneurosci.3575-09.2009.

    Article  PubMed  Google Scholar 

  68. Thalmann, M., & Oberauer, K. (2017). Domain-specific interference between storage and processing in complex span is driven by cognitive and motor operations. The Quarterly Journal of Experimental Psychology, 70(1), 109-126.

    Article  Google Scholar 

  69. Tulving, E. (1985). How many memory systems are there? American Psychologist, 40(4), 385-398. doi: https://doi.org/10.1037/0003-066X.40.4.385

    Article  Google Scholar 

  70. Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science 247, 301–306. doi: https://doi.org/10.1126/science.2296719

    Article  PubMed  Google Scholar 

  71. van Doorn, J., van den Bergh, D., Bohm, U., Dablander, F., Derks, K., Draws, T., … & Ly, A. (2019). The JASP guidelines for conducting and reporting a Bayesian Analysis.

  72. Voss, J. L., & Gonsalves, B. D. (2010). Time to go our separate ways: Opposite effects of study duration on priming and recognition reveal distinct neural substrates. Frontiers in Human Neuroscience, 4, 227. doi: https://doi.org/10.3389/fnhum.2010.00227

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ward, E. V., Berry, C. J., & Shanks, D. R. (2013). An effect of age on implicit memory that is not due to explicit contamination: Implications for single and multiple-systems theories. Psychology and Aging, 28(2), 429–442. doi: https://doi.org/10.1037/a0031888

    Article  PubMed  Google Scholar 

  74. Wechsler, D. (1997). Wechsler Adult Intelligence ScaleThird Edition (WAIS–III). San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  75. Weiskrantz, L. (1987). Neuroanatomy of memory and amnesia: A case for multiple memory systems. Human Neurobiology, 6(2), 93–105.

    PubMed  Google Scholar 

Download references

Open practices statement

The data that support the findings of this study are available from the corresponding author upon request.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judit Castellà.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castellà, J., Pina, R., Baqués, J. et al. Differential effects of working memory load on priming and recognition of real images. Mem Cogn (2020). https://doi.org/10.3758/s13421-020-01064-y

Download citation

Keywords

  • Working memory load
  • Priming
  • Recognition