Seen this scene? Scene recognition in the reaction-time Concealed Information Test

Abstract

Detecting a suspect’s recognition of a crime scene (e.g., a burgled room or a location visited for criminal activity) can be of great value during criminal investigations. Although it is established that the Reaction-Time Concealed Information Test (RT-CIT) can determine whether a suspect recognizes crime-related objects, no research has tested whether this capability extends to the recognition of scenes. In Experiment 1, participants were given an autobiographic scene-based RT-CIT. In Experiment 2, participants watched a mock crime video before completing an RT-CIT that included both scenes and objects. In Experiment 3, participants completed an autobiographic scene-based RT-CIT, with half instructed to perform a physical countermeasure. Overall, the findings showed that an equivalent RT-CIT effect can be found with both scene and object stimuli and that RT-CITs may not be susceptible to physical countermeasure strategies, thereby increasing its real-world applicability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    On reflection, our initial estimation of an RT-CIT within-subjects effect size of d = 0.8 for scene stimuli may have been optimistic, given that our review of the literature suggested that the RT-CIT effect size with scenes might have been smaller than with objects. However, a sensitively analysis for this experiment was computed using G*Power, which revealed a minimum detectable CIT effect size of d = 0.618 (Note: This was much smaller than the actual CIT effect size revealed for this experiment, d = 1.48, suggesting that our design was suitable).

  2. 2.

    Because of a technical error, the first half of the participants saw an extended interstimuli interval of 1,000; 1,500; or 3,000 ms (instead of 500; 750; or 1,500 ms). However, ISI length (intended vs. extended) did not interact with control and crime item RTs, F(1, 34) = 3.363, p = .075, or % error rates F(1, 34) = .114, p = .738, and therefore results were collapsed over ISI length.

  3. 3.

    Although this is not how the RT-CIT test works, as the target items (here, the New York University images) are discarded from the analysis, this instruction was provided to participants to ensure that they were attentive to the task without revealing how the test worked.

  4. 4.

    Given that there was no previous literature to indicate the size of a possible scene–object RT-CIT difference, the authors referred to a previous study which, during a post hoc analysis, found no significant difference between object and scene stimuli in the physiological CIT (Norman et al., 2020). Analysis of that data revealed no significant interaction between item (crime vs. control) and stimuli (object vs. scene) and a medium within-subjects effect size of, \( {\eta}_p^2 \) = .046. A post hoc power analysis using G*Power (Faul et al., 2007), the effect size above, and α = 0.05 for a repeated-measures ANOVA, suggested that 46 subjects would be sufficient for a power of 0.95.

References

  1. Anson, G. J. (1982). Memory drum theory: Alternative tests and explanations for the complexity effects on simple reaction time. Journal of Motor Behavior, 14(3), 228–246.

    PubMed  Article  Google Scholar 

  2. Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in cognitive sciences, 17(5), 210–219.

    PubMed  Article  Google Scholar 

  3. Ben-Shakhar, G. (1985). Standardization within individuals: A simple method to neutralize individual differences in skin conductance. Psychophysiology, 22(3), 292–299.

    PubMed  Article  Google Scholar 

  4. Ben-Shakhar, G., & Elaad, E. (2003). The validity of psychophysiological detection of information with the Guilty Knowledge Test: A meta-analytic review. Journal of Applied Psychology, 88(1), 131.

    PubMed  Article  Google Scholar 

  5. Carmel, D., Dayan, E., Naveh, A., Raveh, O., & Ben-Shakhar, G. (2003). Estimating the validity of the guilty knowledge test from simulated experiments: The external validity of mock crime studies. Journal of Experimental Psychology: Applied, 9(4), 261.

    PubMed  Google Scholar 

  6. Chechik, G., Shalit, U., Sharma, V., & Bengio, S. (2009). An online algorithm for large scale image similarity learning. Advances in Neural Information Processing Systems, 22, 306–314.

    Google Scholar 

  7. Cleary, A. M., & Reyes, N. L. (2009). Scene recognition without identification. Acta Psychologica, 131(1), 53–62.

    PubMed  Article  Google Scholar 

  8. Debey, E., Ridderinkhof, R. K., De Houwer, J., De Schryver, M., & Verschuere, B. (2015). Suppressing the truth as a mechanism of deception: Delta plots reveal the role of response inhibition in lying. Consciousness and Cognition, 37, 148–159.

    PubMed  Article  Google Scholar 

  9. Eom, J. S., Sohn, S., Park, K., Eum, Y. J., & Sohn, J. H. (2016). Effects of varying numbers of crime items on RT-based CIT accuracy. International Journal of Multimedia and Ubiquitous Engineering, 11(2), 229–238.

    Article  Google Scholar 

  10. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fisher, B. A. J. (2004). Techniques of crime scene investigation (7th ed.) New York, NY: CRC Press.

    Google Scholar 

  12. Ganis, G., & Kutas, M. (2003). An electrophysiological study of scene effects on object identification. Cognitive Brain Research, 16(2), 123–144.

    PubMed  Article  Google Scholar 

  13. Ganis, G., Rosenfeld, J. P., Meixner, J., Kievit, R. A., & Schendan, H. E. (2011). Lying in the scanner: Covert countermeasures disrupt deception detection by functional magnetic resonance imaging. NeuroImage, 55(1), 312–319.

    PubMed  Article  Google Scholar 

  14. Gronau, N., Ben-Shakhar, G., & Cohen, A. (2005). Behavioral and physiological measures in the detection of concealed information. Journal of Applied Psychology, 90(1), 147.

    PubMed  Article  Google Scholar 

  15. Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly: American Association for Health, Physical Education and Recreation, 31(3), 448–458.

    Google Scholar 

  16. Horváth, A. (2015). Object recognition based on Google’s reverse image search and image similarity. In Seventh International Conference on Graphic and Image Processing (pp. 98170Q–98170Q). Bellingham, WA: International Society for Optics and Photonics.

  17. Hu, X., Evans, A., Wu, H., Lee, K., & Fu, G. (2013). An interfering dot-crime item task facilitates the detection of mock crime memory in a reaction time (RT)-based concealed information test. Acta Psychologica, 142(2), 278–285.

    PubMed  Article  Google Scholar 

  18. Huntjens, R. J., Verschuere, B., & McNally, R. J. (2012). Inter-identity autobiographical amnesia in patients with dissociative identity disorder. PLOS ONE, 7(7), e40580.

    PubMed  PubMed Central  Article  Google Scholar 

  19. JASP Team. (2019). JASP (Version 0.8.5.1) [ Computer software]. Retrieved from https://jasp-stats.org/

  20. Jeffreys, H. (1961). Theory of probability (3rd ed.) Oxford, England: Oxford University Press.

    Google Scholar 

  21. Jokinen, A., Santtila, P., Ravaja, N., & Puttonen, S. (2006). Salience of guilty knowledge test items affects accuracy in realistic mock crimes. International Journal of Psychophysiology, 62(1), 175–184.

    PubMed  Article  Google Scholar 

  22. Kent, C., Lamberts, K., & Patton, R. (2018). Cue quality and criterion setting in recognition memory. Memory & Cognition, 46, 757–769.

    Article  Google Scholar 

  23. Klapp, S. T. (2010). Comments on the classic Henry and Rogers (1960) paper on its 50th anniversary: Resolving the issue of simple versus choice reaction time. Research Quarterly for Exercise and Sport, 81(1), 108–112.

    PubMed  Article  Google Scholar 

  24. klein Selle, N., Verschuere, B., Kindt, M., Meijer, E., & Ben-Shakhar, G. (2016). Orienting versus inhibition in the Concealed Information Test: Different cognitive processes drive different physiological measures. Psychophysiology, 53(4), 579–590. doi:https://doi.org/10.1111/psyp.12583

    Article  PubMed  Google Scholar 

  25. Kleinberg, B., & Verschuere, B. (2015). Memory detection 2.0: The first web-based memory detection test. PLOS ONE, 10(4), e0118715. doi:https://doi.org/10.1371/journal.pone.0118715

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kleinberg, B., & Verschuere, B. (2016). The role of motivation to avoid detection in reaction time-based concealed information detection. Journal of Applied Research in Memory and Cognition, 5(1), 43–51.

    Article  Google Scholar 

  27. Meijer, E. H., Smulders, F. T., Johnston, J. E., & Merckelbach, H. L. (2007). Combining skin conductance and forced choice in the detection of concealed information. Psychophysiology, 44(5), 814–822.

    PubMed  Article  Google Scholar 

  28. Meijer, E. H., klein Selle, N., Elber, L., & Ben-Shakhar, G. (2014). Memory detection with the Concealed Information Test: A meta-analysis of skin conductance, respiration, heart rate, and P300 data. Psychophysiology, 51(9), 879–904.

    PubMed  Article  Google Scholar 

  29. Meijer, E. H., Verschuere, B., Gamer, M., Merckelbach, H., & Ben-Shakhar, G. (2016). Deception detection with behavioral, autonomic, and neural measures: Conceptual and methodological considerations that warrant modesty. Psychophysiology, 53(5), 593–604.

    PubMed  Article  Google Scholar 

  30. Melcher, D. (2006). Accumulation and persistence of memory for natural scenes. Journal of Vision, 6(1), 2–2.

    Article  Google Scholar 

  31. Mertens, R., & Allen, J. J. (2008). The role of psychophysiology in forensic assessments: Deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology, 45(2), 286–298.

    PubMed  Article  Google Scholar 

  32. Munneke, J., Brentari, V., & Peelen, M. V. (2013). The influence of scene context on object recognition is independent of attentional focus. Frontiers in Psychology, 4. doi:https://doi.org/10.3389/fpsyg.2013.00552

  33. Noordraven, E., & Verschuere, B. (2013). Predicting the sensitivity of the reaction time-based Concealed Information Test. Applied Cognitive Psychology, 27(3), 328–335.

    Article  Google Scholar 

  34. Norman, D. G., Wade, K. A., Williams, M. A., & Watson, D. G. (2020). Caught virtually lying—Crime scenes in virtual reality help to expose suspects’ concealed recognition. Journal of Applied Research in Memory and Cognition, 9(1), 118–127. doi:https://doi.org/10.1016/j.jarmac.2019.12.008

    Article  Google Scholar 

  35. Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.

    PubMed  Article  Google Scholar 

  36. Osugi, A. (2011). Daily application of the concealed information test: Japan. In B. Verschuere, G. Ben-Shakhar, & E. H. Meijer (Eds.), Memory detection: Theory and application of the Concealed Information Test (pp. 253–275). Cambridge, England: Cambridge University Press.

    Google Scholar 

  37. Peterson, J., Sommers, I., Baskin, D., & Johnson, D. (2010). The role and impact of forensic evidence in the criminal justice process. Retrieved from https://www.ncjrs.gov/pdffiles1/nij/grants/231977.pdf

  38. Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology, 41(2), 205–219.

    PubMed  Article  Google Scholar 

  39. Seymour, T. L., & Fraynt, B. R. (2009). Time and encoding effects in the concealed knowledge test. Applied Psychophysiology and Biofeedback, 34(3), 177–187.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Seymour, T. L., & Kerlin, J. R. (2008). Successful detection of verbal and visual concealed knowledge using an RT-based paradigm. Applied Cognitive Psychology, 22(4), 475–490.

    Article  Google Scholar 

  41. Seymour, T. L., Seifert, C. M., Shafto, M. G., & Mosmann, A. L. (2000). Using response time measures to assess “guilty knowledge”. Journal of Applied Psychology, 85(1), 30.

    PubMed  Article  Google Scholar 

  42. Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25, 207–222.

    PubMed  Article  Google Scholar 

  43. Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for picture: Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19, 73–74.

    Article  Google Scholar 

  44. Suchotzki, K., Verschuere, B., Peth, J., Crombez, G., & Gamer, M. (2015). Manipulating item proportion and deception reveals crucial dissociation between behavioral, autonomic, and neural indices of concealed information. Human Brain Mapping, 36(2), 427–439.

    PubMed  Article  Google Scholar 

  45. Suchotzki, K., Verschuere, B., Van Bockstaele, B., Ben-Shakhar, G., & Crombez, G. (2017). Lying takes time: A meta-analysis on reaction time measures of deception. Psychological Bulletin, 143(4), 428.

    PubMed  Article  Google Scholar 

  46. Varga, M., Visu-Petra, G., Miclea, M., & Visu-Petra, L. (2015). The “good cop, bad cop” effect in the RT-based Concealed Information Test: Exploring the effect of emotional expressions displayed by a virtual investigator. PLOS ONE, 10(2), e0116087.

    PubMed  PubMed Central  Article  Google Scholar 

  47. Verschuere, B., Prati, V., & Houwer, J. D. (2009). Cheating the lie detector: Faking in the autobiographical Implicit Association Test. Psychological Science, 20(4), 410–413.

    PubMed  Article  Google Scholar 

  48. Verschuere, B., Crombez, G., Degrootte, T., & Rosseel, Y. (2010). Detecting concealed information with reaction times: Validity and comparison with the polygraph. Applied Cognitive Psychology, 24(7), 991-1002.

    Article  Google Scholar 

  49. Verschuere, B., Ben-Shakhar, G., & Meijer, E. (Eds.). (2011). Memory detection: Theory and application of the Concealed Information Test. Cambridge, England: Cambridge University Press.

    Google Scholar 

  50. Verschuere, B., Kleinberg, B., & Theocharidou, K. (2015a). RT-based memory detection: Item saliency effects in the single-crime item and the multiple-crime item protocol. Journal of Applied Research in Memory and Cognition, 4(1), 59–65.

    Article  Google Scholar 

  51. Visu-Petra, G., Miclea, M., & Visu-Petra, L. (2012). Reaction time-based detection of concealed information in relation to individual differences in executive functioning. Applied Cognitive Psychology, 26(3), 342–351.

    Article  Google Scholar 

  52. Visu-Petra, G., Varga, M., Miclea, M., & Visu-Petra, L. (2013). When interference helps: Increasing executive load to facilitate deception detection in the concealed information test. Frontiers in Psychology, 4, 146.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Visu-Petra, G., Miclea, M., Buş, I., & Visu-Petra, L. (2014). Detecting concealed information: The role of individual differences in executive functions and social desirability. Psychology, Crime & Law, 20(1), 20–36.

    Article  Google Scholar 

  54. Visu-Petra, L., Jurje, O., Ciornei, O., & Visu-Petra, G. (2016). Can you keep a secret? Introducing the RT-based Concealed Information Test to children. Psychology, Crime & Law, 22(3), 276–301.

    Article  Google Scholar 

  55. Wagenmakers, E. J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., … Matzke, D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35–57.

    Article  Google Scholar 

  56. Wichmann, F. A., Sharpe, L. T., & Gegenfurtner, K. R. (2002). The contributions of color to recognition memory for natural scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 509.

    PubMed  Google Scholar 

  57. Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry 39, 561–577.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danielle G. Norman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norman, D.G., Gunnell, D.A., Mrowiec, A.J. et al. Seen this scene? Scene recognition in the reaction-time Concealed Information Test. Mem Cogn (2020). https://doi.org/10.3758/s13421-020-01063-z

Download citation

Keywords

  • Deception detection
  • Reaction-Time Concealed Information Test
  • RT-CIT
  • Scenes
  • Recognition memory