The trajectory of thought: Heavy-tailed distributions in memory foraging promote efficiency

Abstract

Free-recall tasks suggest human memory foraging may follow a heavy-tailed distribution, such as a Lévy flight, patch foraging, or area-restricted search – walk procedures that are common in other activities of cognitive agents, such as food foraging in both animals and humans. To date, research merely equates memory foraging with hunting in the physical world based on similarities in statistical structure. The current work supports that memory foraging follows a heavy-tailed distribution by using categories with quantitative distances between each item: countries, which have physical distances, and animals, from which cognitive distances can be derived using a multidimensional scaling (MDS) procedure. Likewise, inter-item lag times follow a heavy-tailed distribution. The current work also demonstrates that inter-item distances and times are positively correlated, suggesting the organization of items in memory may be akin to the organization of a physical landscape. Finally, both studies show that participants’ original, heavy-tailed lists of countries and animal names produce shorter overall distances traveled than random selection. Human memory foraging follows the same pattern as foraging in the natural world – perhaps because exposure to ecological settings informs our inner cognitive experience – leading to a processing and retrieval time benefit.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

None of the data or materials for the experiments reported here are available, and neither of the experiments were preregistered.

References

  1. Aks, D. J., Zelinsky, G., & Sprott, J. C. (2002). Memory across eye-movements: 1/f dynamic in visual search. Journal of Nonlinear Dynamics & the Life Sciences, 6, 1-25.

    Google Scholar 

  2. Backhaus, W. (1991). Color opponent coding in the visual system of the honeybee. Vision Research, 31(7-8), 1381-1397.

    PubMed  Google Scholar 

  3. Bousfield, W. A., & Sedgewick, C. H. (1944). An analysis of sequences of restricted associative responses. The Journal of General Psychology, 30(2), 149-165.

    Google Scholar 

  4. Bouzidi, S., Riffi, M. E., & Bouzidi, A. (2017). Comparative analysis of three metaheuristics for solving the travelling salesman problem. Transactions on Machine LEarning and Artificial Intelligence, 5(4), 395-402.

    Google Scholar 

  5. Brockmann, D., Hufnage, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439, 462-465.

    PubMed  Google Scholar 

  6. Brown, C. T., Liebovitch, L. S., & Glendon, R. (2006). Levy flights in Dobe Ju/'hoansi foraging patterns. Human Ecology, 35(1), 129-138.

    Google Scholar 

  7. Bulmer, M. G. (1979). Principles of Statistics. North Chelmsford, MA: Courier Corporation.

  8. Buzsaki, G. (2006). Rhythms of the Brain. Oxford University Press.

  9. Central Intelligence Agency. (2016). The World Factbook. Retrieved from Central Intelligence Agency (US): https://www.cia.gov/library/publications/the-world-factbook/

  10. Charnov, E. L. (1976). Optimal foraging: Attack strategy of a mantid. The American Naturalist 110(971), 141-151.

    Google Scholar 

  11. Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661-703.

    Google Scholar 

  12. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  13. Cowan, N. (1995). Attention and Memory: An Integrated Framework. Oxford University Press.

  14. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407.

    Google Scholar 

  15. Douw, L., Schoonheim, M. M., Landi, D., Van der Meer, M. L., Geurts, J. J. G., Reijneveld, J. C., Klein, M., Stam, C. J. (2011). Cognition is related to resting-state small-world network topology: An magnetoencephalographic study. Neuroscience, 175, 169-177.

    PubMed  Google Scholar 

  16. Ekman, G. (1954). Dimensions of color vision. The Journal of Psychology, 38(2), 467-474.

    Google Scholar 

  17. Focardi, S. & Cecere, J. G. (2013). The Levy flight foraging hypothesis in a pelagic seabird. Journal of Animal Ecology, 83(2), 353-364.

    PubMed  Google Scholar 

  18. Godwin, H. J., Menneer, T., Liversedge, S. P., Cave, K. R., Holliman, N. S., & Donnelly, N. (2017). Adding depth to overlapping displays can improve visual search performance. Journal of Experimental Psychology: Human Perception and Performance, 43(8), 1532-1549.

    PubMed  Google Scholar 

  19. Goldstone, R. (1994). An efficient method for obtaining similarity data. Behavior Research Methods, Instruments, & Computers, 26(4), 381-386.

    Google Scholar 

  20. Graesser, A. & Mandler, G. (1978). Limited processing capacity constrains the storage of unrelated sets of words and retrieval from natural categories. Journal of Experimental Psychology: Human Learning & Memory, 4, 86-100.

    Google Scholar 

  21. Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114(2), 211.

    PubMed  Google Scholar 

  22. Halpern, A. R., Zatorre, R. J., Bouffard, M., & Johnson, J. A. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42, 1281-1292.

    PubMed  Google Scholar 

  23. He, H., Sui, J., Yu. Q., Turner, J. A., Ho, B. C., Sponheim, S. R., Manoach, D. S., Clark, V. P., Calhoun, V. D. (2012). Altered small-world brain networks in schizophrenia patients during working memory performance. PLoS one 7(6).

  24. Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal foraging in semantic memory. Psychological Review, 119(2), 431-440.

    PubMed  Google Scholar 

  25. Hills, T. T., Kalff, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-restricted search in human foraging. PLoS One, 8(4).

  26. Hills, T. T., Todd, P. M., & Jones, M. N. (2015). Foraging in semantic fields: How we search through memory. Topics in Cognitive Science, 7(3), 513-534.

    PubMed  Google Scholar 

  27. Holden, J. G., Van Orden, G. C., & Turvey, M. T. (2009). Dispersion of response times reveals cognitive dynamics. Psychological Review, 116, 318-342.

    PubMed  PubMed Central  Google Scholar 

  28. Hout, M. C., Goldinger, S. D., & Ferguson, R. W. (2013). The versatility of SpAM: A fast, efficient, spatial method of data collection for multidimensional scaling. Journal of Experimental Psychology: General, 142(1), 256.

    Google Scholar 

  29. Humphries, N. E. & Sims, D. W. (2014). Optimal foraging strategies: Levy walks balance searching and patch exploitation under a very broad range of conditions. Journal of Theoretical Biology, 358, 179-193.

    PubMed  Google Scholar 

  30. Humphries, N. E., Schaefer, K. M., Fuller, D. W., Phillips, G. E., Wilding, C., & Sims, D. W. (2016). Scale-dependent to scale-free: Daily behavioural switching and optimized searching in a marine predator. Animal Behavior, 113, 189-201.

    Google Scholar 

  31. Jia, T., Jiang, B., Carling, K., Bolin, M., & Ban, Y. (2012). An empirical study on human mobility and its agent-based modeling. Journal of Statistical Mechanics: Theory and Experiment, 2012(11), P11024.

    Google Scholar 

  32. Jiang, B., Yin, J., & Zhao, S. (2009). Characterizing the human mobility pattern in a large street network. Physical Review E, 80(2).

  33. Kang, C., Ma, X., Tong, D., & Liu, Y. (2012). Intra-urban human mobility patterns: An urban morphology perspective. Physica A, 391, 1702-1717.

    Google Scholar 

  34. Kenett, Y. N., Levi, E., Anaki, D., & Faust, M. (2017). The semantic distance task: Quantifying semantic distance with semantic network path length. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(9), 1470-1489.

    PubMed  Google Scholar 

  35. Kerster, B. E., Rhodes, T., & Kello, C. T. (2016). Spatial memory in foraging games. Cognition, 148, 85-96.

    PubMed  Google Scholar 

  36. Kosslyn, S. M. (1973). Scanning visual images: Some structural implications. Perception and Psychophysics, 14, 90-94.

    Google Scholar 

  37. Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 4(1), 47-60.

    PubMed  Google Scholar 

  38. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1-27.

    Google Scholar 

  39. Kruskal, J. B. & Wish, M. (1978). Multidimensional Scaling (Vol. 11). New York: Sage.

  40. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes, 25, 259-284.

    Google Scholar 

  41. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H., Shmoys, D. B., & Hurkens, C. A. (Eds.). (1997). The Traveling Salesman Problem (4). New York: Chichester/Wiley.

    Google Scholar 

  42. Lin, J. H., Chou, C. W., Yang, C. H., & Tsai, H. L. (2012). A chaotic Levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. Computer and Information Technology, 2(2), 56-63.

    Google Scholar 

  43. Longo, M. R. & Golubova, O. (2017). Maping the internal geometry of tacticle space. Journal of Experimental Psychology: Human Perception and Performance, 43(10), 1815-1827.

    PubMed  Google Scholar 

  44. Meilinger, T., Knauff, M., & Bülthoff, H. H. (2008). Working memory in wayfinding - A dual task experiment in a virtual city. Cognitive Science, 32(4), 755-770.

    PubMed  Google Scholar 

  45. Montez, P. Thompson, G., Kello, C. T. (2015). The role of semantic clustering in optimal memory foraging. Cognitive Science, 39(8), 1925-1939.

    PubMed  Google Scholar 

  46. Moreau, D. & Conway, A. R. (2014). The case for an ecological approach to cognitive training. Trends in Cognitive Science, 18(7), 334-336.

    Google Scholar 

  47. Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1999). The University of South Florida Word Association, Rhyme, and Fragment Norms. http://luna.cas.usf.edu/~nelson/

  48. Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411.

    PubMed  Google Scholar 

  49. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. University of Illinois Press.

  50. Patten, K. J., McBeath, M. K., & Baxter, L. C. (2019). Harmonicity: Behavioral and neural evidence for functionality in Auditory Scene Analysis. Auditory Perception and Cognition.

  51. Peirce, J. W. (2007). PsychoPy - Psychophysics software in Python. Journal of Neuroscience Methods, 162(1), 8-13.

    PubMed  PubMed Central  Google Scholar 

  52. Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2(10).

  53. Pirolli, P. & Card, S. (1999). Information foraging. Psychological Review, 106(4), 643.

    Google Scholar 

  54. Pyke, G. H. (2015). Understanding movements of organisms: It's time to abandon the Levy foraging hypothesis. Methods in Ecology and Evolution, 6(1), 1-16.

    Google Scholar 

  55. Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z., Marlowe, F. W., & Pontzer, H. (2013). Evidence of Levy walk foraging patterns in hman hunter-gatherers. Proceedings of the National Academy of Sciences, 111(2), 728-733.

    Google Scholar 

  56. Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111(1), 159.

    PubMed  PubMed Central  Google Scholar 

  57. Reynolds, A. M. (2011). Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem. Physical Review E, 83.

  58. Reynolds, A. M. & Frye, M. A. (2007). Free-flightt odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS one, 2(4), e354.

    PubMed  PubMed Central  Google Scholar 

  59. Reynolds, A. M., Smith, A. D., Reynolds, D. R., Carreck, N. L., & Osborne, J. L. (2007). Honeybees perform optimal scale-free searching flights when attempting to locate a food source. The Journal of Experimental Biology, 210, 3763-3770.

    PubMed  Google Scholar 

  60. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the Levy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 19(3), 630-643.

    Google Scholar 

  61. Rhodes, T. (2013). Recalling items from a category for 1 hour: An inquiry into power-law behavior and memory foraging. Nonlinear dynamics, psychology, and life sciences, 17(3), 361-384.

    PubMed  Google Scholar 

  62. Rhodes, T. & Turvey, M. T. (2007). Human memory retrieval as Levy foraging. Physcia A: Statistical Mechanics and Its Applications, 385(1), 255-260.

    Google Scholar 

  63. Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210(4468), 390-398.

    PubMed  Google Scholar 

  64. Shepard, R. N. & Cooper, L. A. (1992). Representation of colors in the blind, color-blind, and normally sighted. Psychological Science, 3(2), 97-104.

    Google Scholar 

  65. Sims, D. W., Humphries, N. E., Bradford, R. W., & Bruce, B. D. (2011). Levy flight and Brownian search patterns of free-range predator reflect different prey field characteristics. Journal of Animal Ecology, 81(2), 432-442.

    PubMed  Google Scholar 

  66. Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J., Pitchford, J. W., … Metcalfe, J. D. (2008). Scaling laws of marine predator search behaviour. Nature, 451(7182), 1098-1102.

    PubMed  Google Scholar 

  67. Slamecka, N. J. (1969). Testing for associative storage in multitrial free recall. Journal of Experimental Psychology, 81(3), 557.

    Google Scholar 

  68. Spivey, M. & Dale, R. (2004). On the continuity of mind: Toward a dynamical account of cognition. In B. Ross, The Psychology of Learning and Motivation, Vol. 45 (pp. 87-142). San Diego: Elsevier.

  69. Stanley, H. E., Amaral, L. A., Canning, D., Gopikrishnan, P., Lee, Y., & Liu, Y. (1999). Econophysics: Can physicists contribute to the science of economics? Physica A, 269, 156-169.

    Google Scholar 

  70. Stephen, D. G. & Mirman, D. (2010). Interactions dominate the dynamics of visual cognition. Cognition, 115(1), 154-165.

    PubMed  PubMed Central  Google Scholar 

  71. Stephen, D. G., Mirman, D., Magnuson, J. S., & Dixon, J. A. (2009). Levy-like diffusion in eye movements during spoken-language comprehension. Physical Review E, 79.

  72. Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2004). Word association spaces for predicting semantic similarity effects in episodic memory. Experimental Cognitive Psychology and Its Applications: Festschrift in honor of Lyle Bourne, Walter Kintsch, and Thomas Landauer, 237-249.

  73. Szary, J., Kello, C. T., & Dale, R. (2015). Memory foraging in a spatial domain. Cognitive Science.

  74. Terdik, G. & Gyires, T. (2009). Levy flights and fractal modeling of internet traffic. IEEE/ACM Transactions on Networking, 17(1), 120-129.

    Google Scholar 

  75. Thompson, G. W. & Kello, C. T. (2014). Walking across Wikipedia: A scale-free network model of semantic memory retrieval. Frontiers in Psychology 5(86).

  76. Thorndyke, P. W. (1981). Distance estimation from cognitive maps. Cognitive Psychology, 13(4), 526-550.

    Google Scholar 

  77. Treat, T. A., McFall, R. M., Viken, R. J., Nosofsky, R. M., MacKay, D. B., & Kruschke, J. K. (2002). Assessing clinically relevant perceptual organization with multidimensional scaling techniques. Psychological Assessment, 14(3), 239-252.

    PubMed  Google Scholar 

  78. Tversky, A. (1977). Features of similarity. Psychological Review 84(4), 327.

    Google Scholar 

  79. Tversky, A. & Gati, I. (1978). Studies of similarity. In E. Roach, & B. B. Lloyd, Cognition and Categorization (pp. 79-98). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  80. van der Ham, I. J., Faber, A. M., Venselaar, M., van Kreveld, M. J., & Loffler, M. (2015). Ecological validity of virtual environments to assess human navigation ability. Frontiers in Psychology, 6(637).

  81. Viken, R. J., Treat, T. A., Nosofsky, R. M., McFall, R. M., & Palmeri, T. J. (2002). Modeling individual differences in perceptual and attentional processes related to bulimic symptoms. Journal of Abnormal Psychology, 111(4), 598-609.

    PubMed  Google Scholar 

  82. Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Levy flight search patterns of wandering albatrosses. Nature, 381(6581), 413-415.

    Google Scholar 

  83. Viswanathan, G. M., Buldryev, S. V., Havlin, S., da Luz, M. G., Raposo, E. P., & Stanley, H. E. (1999). Optimizing the success of random searches. Nature, 401(6756), 911-914.

    PubMed  Google Scholar 

  84. Walsh, T. (1999). Search in a small world. In ljcai, Vol. 99, pp. 1172-1177.

    Google Scholar 

  85. West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Applications (pp. 56-75). Thousand Oaks, CA, US: Sage Publications, Inc.

    Google Scholar 

  86. Wixted, J. T. & Rohrer, D. (1994). Analyzing the dynamics of free recall: An integrative review of the empirical literature. Psychonomic Bulletin & Review, 1 (1), 89-106

    Google Scholar 

  87. Yang, X. S. (2010). Firefly algorithm, Levy flights, and global optimization. Research and Development in Intelligent Systems, XXVI, 209-218.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Jakob Patten.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patten, K.J., Greer, K., Likens, A.D. et al. The trajectory of thought: Heavy-tailed distributions in memory foraging promote efficiency. Mem Cogn 48, 772–787 (2020). https://doi.org/10.3758/s13421-020-01015-7

Download citation

Keywords

  • Area-restricted search
  • Patch foraging
  • Lévy distribution
  • Foraging
  • Memory retrieval
  • Heavy-tailed distribution