Advertisement

Memory & Cognition

, Volume 46, Issue 5, pp 685–698 | Cite as

Collaboration facilitates abstract category learning

  • J. Elizabeth Richey
  • Timothy J. Nokes-Malach
  • Kara Cohen
Article

Abstract

We examined the effects of collaboration (dyads vs. individuals) and category structure (coherent vs. incoherent) on learning and transfer. Working in dyads or individually, participants classified examples from either an abstract coherent category, the features of which are not fixed but relate in a meaningful way, or an incoherent category, the features of which do not relate meaningfully. All participants were then tested individually. We hypothesized that dyads would benefit more from classifying the coherent category structure because past work has shown that collaboration is more beneficial for tasks that build on shared prior knowledge and provide opportunities for explanation and abstraction. Results showed that dyads improved more than individuals during the classification task regardless of category coherence, but learning in a dyad improved inference-test performance only for participants who learned coherent categories. Although participants in the coherent categories performed better on a transfer test, there was no effect of collaboration.

Keywords

Categories Learning Collaboration Metacognition 

Notes

Acknowledgements

This research was supported by Grant SBE00354420 from the National Science Foundation to the Pittsburgh Science of Learning Center (www.learnlab.org). We thank Emily Schmidt and Sarah Honsaker for their assistance in collecting and coding data.

References

  1. Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359.  https://doi.org/10.1207/S15327809JLS1203_1 CrossRefGoogle Scholar
  2. Basden, B. H., Basden, D. R., Bryner, S., & Thomas, R. L. (1997). A comparison of group and individual remembering: Does collaboration disrupt retrieval strategies? Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(5), 1176–1191.  https://doi.org/10.1037/0278-7393.23.5.1176 PubMedGoogle Scholar
  3. Benbunan-Fich, R., & Arbaugh, J. B. (2006). Separating the effects of knowledge construction and group collaboration in learning outcomes of web-based courses. Information & Management, 43(6), 778–793.  https://doi.org/10.1016/j.im.2005.09.001 CrossRefGoogle Scholar
  4. Brodbeck, F. C., & Greitemeyer, T. (2000). Effects of individual versus mixed individual and group experience in rule induction on group member learning and group performance. Journal of Experimental Social Psychology, 36(6), 621–648.  https://doi.org/10.1006/jesp.2000.1423 CrossRefGoogle Scholar
  5. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd). Hillsdale: Erlbaum.  https://doi.org/10.1234/12345678 Google Scholar
  6. Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavior Research Methods, Instruments, and Computers, 25(2), 257–271.  https://doi.org/10.3758/BF03204507 CrossRefGoogle Scholar
  7. Diehl, M., & Stroebe, W. (1987). Productivity loss in brainstorming groups: Toward the solution of a riddle. Journal of Personality and Social Psychology, 53(3), 497–509.  https://doi.org/10.1037/0022-3514.53.3.497 CrossRefGoogle Scholar
  8. Erickson, J. E., Chin-Parker, S., & Ross, B. H. (2005). Inference and classification learning of abstract coherent categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 86–99.  https://doi.org/10.1037/0278-7393.31.1.86 PubMedGoogle Scholar
  9. Gadgil, S., & Nokes-Malach, T. J. (2012). Overcoming collaborative inhibition through error correction: A classroom experiment. Applied Cognitive Psychology, 26(3), 410–420.  https://doi.org/10.1002/acp.1843 CrossRefGoogle Scholar
  10. Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 5–26.  https://doi.org/10.1037/0003-066X.53.1.5 CrossRefGoogle Scholar
  11. Hall, R., Dansereau, D., O’Donnell, A. M., & Skaggs, L. (1989). The effect of textual errors on dyadic and individual learning. Journal of Literacy Research, 21(2), 127–140.  https://doi.org/10.1080/10862968909547665 Google Scholar
  12. Harris, C. B., Barnier, A. J., & Sutton, J. (2012). Consensus collaboration enhances group and individual recall accuracy. The Quarterly Journal of Experimental Psychology, 65(1), 179–194.PubMedCrossRefGoogle Scholar
  13. Hausmann, R. G. M., Nokes, T. J., VanLehn, K., & van de Sande, B. (2009). Collaborative dialog while studying worked-out examples. In V. Dimitrova, R. Mizoguchi, B. Du Boulay, & A. C. Graesser (Eds.), Artificial intelligence in education (pp. 596–598). Amsterdam: IOS Press.Google Scholar
  14. Hausmann, R. G. M., van de Sande, B., & VanLehn, K. (2008). Shall we explain? Augmenting learning from intelligent tutoring systems and peer collaboration. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Intelligent tutoring systems (pp. 636–645). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  15. Johansson, N. O., Andersson, J., & Rönnberg, J. (2005). Compensating strategies in collaborative remembering in very old couples. Scandinavian Journal of Psychology, 46, 349–359.  https://doi.org/10.1111/j.1467-9450.2005.00465.x PubMedCrossRefGoogle Scholar
  16. Johnson, D. W., & Johnson, R. T. (1985). The internal dynamics of cooperative learning groups. In R. Slaving, S. Sharan, S. Kagan, R. Hertz-Lazarowitz, C. Webb, & R. Schmuck (Eds.), Learning to cooperate, cooperating to learn (pp. 103–134). New York: Plenum Press.CrossRefGoogle Scholar
  17. Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher’s handbook (4th editio.). Upper Saddle River: Pearson Education International.Google Scholar
  18. Kirschner, F., Paas, F. G. W. C., & Kirschner, P. A. (2009). A cognitive load approach to collaborative learning: United brains for complex tasks. Educational Psychology Review, 21(1), 31–42.  https://doi.org/10.1007/s10648-008-9095-2 CrossRefGoogle Scholar
  19. Kirschner, F., Paas, F. G. W. C., & Kirschner, P. A. (2011). Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect. Applied Cognitive Psychology, 25(4), 615–624.  https://doi.org/10.1002/acp.1730 CrossRefGoogle Scholar
  20. Kobayashi, Y. (1994). Conceptual acquisition and change through social interaction. Human Development, 37(4), 233–241.  https://doi.org/10.1159/000278265 CrossRefGoogle Scholar
  21. Krauss, R. M., & Fussell, S. R. (1991). Perspective-taking in communication: Representations of others’ knowledge in reference. Social Cognition, 9(1), 2–24.  https://doi.org/10.1521/soco.1991.9.1.2 CrossRefGoogle Scholar
  22. Krauss, R. M., & Fussell, S. R. (1996). Social psychological models of interpersonal communication. In E. T. Higgins & A. W. Kruglanski (Eds.), Social psychology: Handbook of basic principles (pp. 655–701). New York: Guilford Press.Google Scholar
  23. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentive reasoning. Cognition and Instruction, 15(3), 287–315.  https://doi.org/10.1207/s1532690xci1503_1 CrossRefGoogle Scholar
  24. Larkin, S. (2006). Collaborative group work and individual development of metacognition in the early years. Research in Science Education, 36(1/2), 7–27.  https://doi.org/10.1007/s11165-006-8147-1 CrossRefGoogle Scholar
  25. Laughlin, P. R., Zander, M. L., Knievel, E. M., & Tan, T. K. (2003). Groups perform better than the best individuals on letters-to-numbers problems: Informative equations and effective strategies. Journal of Personality and Social Psychology, 85(4), 684–694.  https://doi.org/10.1037/0022-3514.85.4.684 PubMedCrossRefGoogle Scholar
  26. Leidner, D. E., & Fuller, M. (1997). Improving student learning of conceptual information: GSS supported collaborative learning vs. individual constructive learning. Decision Support Systems.  https://doi.org/10.1016/S0167-9236(97)00004-3
  27. Lin, E. L., & Murphy, G. L. (1997). Effects of background knowledge on object categorization and part detection. Journal of Experimental Psychology: Human Perception and Performance, 23(4), 1153–1169.  https://doi.org/10.1037/0096-1523.23.4.1153 Google Scholar
  28. Lorge, I., & Solomon, H. (1955). Two models of group behaviour in the solution of eureka-type problems. Psychometrika, 20, 139–148.CrossRefGoogle Scholar
  29. Lumpe, A. T., & Staver, J. R. (1995). Peer collaboration and concept development: Learning about photosynthesis. Journal of Research in Science Teaching, 32(1), 71–98.  https://doi.org/10.1002/tea.3660320108 CrossRefGoogle Scholar
  30. Markman, A. B., & Makin, V. S. (1998). Referential communication and category acquisition. Journal of Experimental Psychology: General, 127(4), 331–354.  https://doi.org/10.1037/0096-3445.127.4.331 CrossRefGoogle Scholar
  31. Meade, M. L., Nokes, T. J., & Morrow, D. G. (2009). Expertise promotes facilitation on a collaborative memory task. Memory , 17(1), 39–48.  https://doi.org/10.1080/09658210802524240 PubMedCrossRefGoogle Scholar
  32. Mengelkamp, C., & Bannert, M. (2010). Accuracy of confidence judgments: Stability and generality in the learning process and predictive validity for learning outcome. Memory & Cognition, 38(4), 441–51.  https://doi.org/10.3758/MC.38.4.441 CrossRefGoogle Scholar
  33. Miyake, N. (2008). Conceptual change through collaboration. In S. Vosniadou (Ed.), International handbook on research in conceptual change (pp. 453–478). New York: Routledge.Google Scholar
  34. Mullen, B., Johnson, C., & Salas, E. (1991). Productivity loss in brainstorming groups: A meta-analytic integration. Basic and Applied Social Psychology, 12(1), 3–23.  https://doi.org/10.1207/s15324834basp1201_1 CrossRefGoogle Scholar
  35. Murphy, G. L. (2002). The big book of concepts. Cambridge: MIT Press.Google Scholar
  36. Nokes-Malach, T. J., Meade, M. L., & Morrow, D. G. (2012). The effect of expertise on collaborative problem solving. Thinking & Reasoning, 18(1), 32–58.  https://doi.org/10.1080/13546783.2011.642206 CrossRefGoogle Scholar
  37. Nokes-Malach, T. J., Richey, J. E., & Gadgil, S. (2015). When is it better to learn together? Insights from research on collaborative learning. Educational Psychology Review, 27(4), 645–656.  https://doi.org/10.1007/s10648-015-9312-8 CrossRefGoogle Scholar
  38. Okada, T., & Simon, H. A. (1997). Collaborative discovery in a scientific domain. Cognitive Science, 21(2), 109–146.  https://doi.org/10.1207/s15516709cog2102_1 CrossRefGoogle Scholar
  39. Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemporary Educational Psychology, 25(3), 241–286. doi: https://doi.org/10.1006/ceps.2000.1040 PubMedCrossRefGoogle Scholar
  40. Patalano, A. L., Chin-Parker, S., & Ross, B. H. (2006). The importance of being coherent: Category coherence, cross-classification, and reasoning. Journal of Memory and Language, 54(3), 407–424.  https://doi.org/10.1016/j.jml.2005.10.005 CrossRefGoogle Scholar
  41. Pociask, S., & Rajaram, S. (2014). The effects of collaborative practice on statistical problem solving: Benefits and boundaries. Journal of Applied Research in Memory and Cognition, 3(4), 252–260.  https://doi.org/10.1016/j.jarmac.2014.06.005 CrossRefGoogle Scholar
  42. Rajaram, S., & Pereira-Pasarin, L. P. (2010). Collaborative memory: Cognitive research and theory. Perspectives on Psychological Science, 5(6), 649–663.  https://doi.org/10.1177/1745691610388763 PubMedCrossRefGoogle Scholar
  43. Rehder, B., & Ross, B. H. (2001). Abstract coherent categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(5), 1261–1275.  https://doi.org/10.1037/0278-7393.27.5.1261 PubMedGoogle Scholar
  44. Ross, B. H., Taylor, E. G., Middleton, E. L., & Nokes, T. J. (2008). Concept and category learning in humans. In H. L. Roediger (Ed.), Cognitive psychology of memory (Vol. 2). Oxford: Elsevier.Google Scholar
  45. Sawyer, R. K. (2007). Group genius: The creative power of collaboration. New York: Basic Books.Google Scholar
  46. Schraw, G. (2009). A conceptual analysis of five measures of metacognitive monitoring. Metacognition and Learning, 4(1), 33–45.  https://doi.org/10.1007/s11409-008-9031-3 CrossRefGoogle Scholar
  47. Schwartz, D. L. (1995). The emergence of abstract representations in dyad problem solving. Journal of the Learning Sciences, 4(3), 321–354.  https://doi.org/10.1207/s15327809jls0403_3 CrossRefGoogle Scholar
  48. Shafto, P., Goodman, N. D., & Frank, M. C. (2012). Learning from others: the consequences of psychological reasoning for human learning. Perspectives on Psychological Science, 7(4), 341–351.  https://doi.org/10.1177/1745691612448481 PubMedCrossRefGoogle Scholar
  49. Shirouzu, H., Miyake, N., & Masukawa, H. (2002). Cognitively active externalization for situated reflection. Cognitive Science, 26(4), 469–501.  https://doi.org/10.1016/S0364-0213(02)00066-6 CrossRefGoogle Scholar
  50. Spalding, T. L., & Ross, B. H. (2000). Concept learning and feature interpretation. Journal of Memory and Cognition, 28(3), 439–451.  https://doi.org/10.3758/BF03198559 PubMedCrossRefGoogle Scholar
  51. Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. Review of Educational Research, 69(1), 21–51.  https://doi.org/10.3102/00346543069001021 CrossRefGoogle Scholar
  52. Stankov, L., Kleitman, S., & Jackson, S. A. (2015). Measures of the trait of confidence. In G. J. Boyle, D. H. Saklofske, & G. Matthews (Eds.), Measures of personality and social psychological constructs (pp. 158–189). London: Academic Press.CrossRefGoogle Scholar
  53. Steiner, I. D. (1972). Group processes and productivity. New York: Academic Press.Google Scholar
  54. Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(05).  https://doi.org/10.1017/S0140525X05000129
  55. van Boxtel, C., van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and the elaboration of conceptual knowledge. Learning and Instruction, 10(4), 311–330.  https://doi.org/10.1016/S0959-4752(00)00002-5 CrossRefGoogle Scholar
  56. Voiklis, J., & Corter, J. E. (2012). Conventional wisdom: negotiating conventions of reference enhances category learning. Cognitive Science, 36(4), 1–28.  https://doi.org/10.1111/j.1551-6709.2011.01230.x CrossRefGoogle Scholar
  57. Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind. In B. Mullen & G. R. Goethals (Eds.), Theories of group behavior (pp. 185–208). New York: Springer.CrossRefGoogle Scholar
  58. Weldon, M. S., & Bellinger, K. D. (1997). Collective memory: Collaborative and individual processes in remembering. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(5), 1160–1175.  https://doi.org/10.1037/0278-7393.23.5.1160 PubMedGoogle Scholar
  59. Whitebread, D., Bingham, S., Grau, V., Pino Pasternak, D., & Sangster, C. (2007). Development of metacognition and self-regulated learning in young children: Role of collaborative and peer-assisted learning. Journal of Cognitive Education and Psychology, 6(3), 433–455.  https://doi.org/10.1891/194589507787382043 CrossRefGoogle Scholar
  60. Wisniewski, E. J. (1995). Prior knowledge and functionally relevant features in concept learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(2), 449–468.  https://doi.org/10.1037/0278-7393.21.2.449 PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • J. Elizabeth Richey
    • 1
    • 2
  • Timothy J. Nokes-Malach
    • 1
  • Kara Cohen
    • 1
  1. 1.Learning Research & Development CenterUniversity of PittsburghPittsburghUSA
  2. 2.Robert H. Smith School of BusinessCollege ParkUSA

Personalised recommendations