Memory & Cognition

, Volume 46, Issue 3, pp 464–481 | Cite as

A comparison of serial order short-term memory effects across verbal and musical domains

Article
  • 194 Downloads

Abstract

Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.

Keywords

Serial order Working memory Music cognition Musical expertise Language and music 

Notes

Author note

This research was supported by the Fund for Scientific Research–FNRS under a FRESH doctoral grant to Simon Gorin; by the Belgian Science Policy Office (BELSPO) under a grant PAI-IUAPP7/11 to Simon Gorin and Steve Majerus; by the University of Liège under a grant ARC12/17/01REST to Steve Majerus.

Authors contributions

The authors’ contributions are reported following the CRediT taxonomy (see http://docs.casrai.org/CRediT). Conceptualization: S.G. and S.M.; Formal analysis: S.G.; Funding acquisition: S.G. and S.M.; Investigation: S.G.; Methodology: S.G. and S.M.; Project administration: S.G. and S.M.; Software: P.M.; Supervision: S.G. and S.M.; Validation: S.G.; Visualization: S.G. and S.M.; Writing–original draft: S.G. and S.M.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any competing interest that could be construed as a potential conflict of interest and that the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability

All relevant data are available through the Open Science Framework (https://osf.io/6kvrz/).

Finally, all the participants provided their written informed consent before starting the experiment, and the study had been approved by the Ethical Board of the Faculty of Psychology, Speech and Language Therapy, and Education of the University of Liège.

References

  1. Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of list memory. Journal of Memory and Language, 38(4), 341–380. doi: https://doi.org/10.1006/jmla.1997.2553 CrossRefGoogle Scholar
  2. Avons, S. E. (1998). Serial report and item recognition of novel visual patterns. British Journal of Psychology, 89(2), 285–308. doi: https://doi.org/10.1111/j.2044-8295.1998.tb02685.x CrossRefPubMedGoogle Scholar
  3. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation. San Diego, CA: Academic Press.Google Scholar
  4. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133(1), 83–100. doi: https://doi.org/10.1037/0096-3445.133.1.83 CrossRefGoogle Scholar
  5. Berkowska, M., & Dalla Bella, S. (2013). Uncovering phenotypes of poor-pitch singing: The Sung Performance Battery (SPB). Frontiers in Psychology, 4, 714. doi: https://doi.org/10.3389/fpsyg.2013.00714 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berti, S., Münzer, S., Schröger, E., & Pechmann, T. (2006). Different interference effects in musicians and a control group. Experimental Psychology, 53(2), 111–116. doi: https://doi.org/10.1027/1618-3169.53.2.111 CrossRefPubMedGoogle Scholar
  7. Berz, W. L. (1995). Working memory in music: A theoretical model. Music Perception: An Interdisciplinary Journal, 12(3), 353–364. doi: https://doi.org/10.2307/40286188 CrossRefGoogle Scholar
  8. Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Frontiers in Psychology, 2, 94. doi: https://doi.org/10.3389/fpsyg.2011.00094 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009). Examining the relationship between free recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word length, presentation rate, and articulatory suppression. Memory & Cognition, 37(5), 689–713. doi: https://doi.org/10.3758/MC.37.5.689 CrossRefGoogle Scholar
  10. Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113(2), 201–233. doi: https://doi.org/10.1037/0033-295X.113.2.201 CrossRefPubMedGoogle Scholar
  11. Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539–576. doi: https://doi.org/10.1037/0033-295X.114.3.539 CrossRefPubMedGoogle Scholar
  12. Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127–181. doi: https://doi.org/10.1037/0033-295X.107.1.127 CrossRefPubMedGoogle Scholar
  13. Burgess, N., & Hitch, G. J. (1992). Toward a network model of the articulatory loop. Journal of Memory and Language, 31(4), 429–460. doi: https://doi.org/10.1016/0749-596X(92)90022-P CrossRefGoogle Scholar
  14. Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106(3), 551–581. doi: https://doi.org/10.1037/0033-295X.106.3.551 CrossRefGoogle Scholar
  15. Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55(4), 627–652. doi: https://doi.org/10.1016/j.jml.2006.08.005 CrossRefGoogle Scholar
  16. Chan, A. S., Ho, Y.-C., & Cheung, M.-C. (1998). Music training improves verbal memory. Nature, 396(6707), 128–128. doi: https://doi.org/10.1038/24075 CrossRefPubMedGoogle Scholar
  17. Cortis, C., Dent, K., Kennett, S., & Ward, G. (2015). First things first: Similar list length and output order effects for verbal and nonverbal stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1179–1214. doi: https://doi.org/10.1037/xlm0000086 PubMedGoogle Scholar
  18. Cowan, N. (1995). Attention and memory: An integrated framework. Oxford, UK: Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780195119107.001.0001
  19. Cowan, N., Saults, J. S., Elliott, E. M., & Moreno, M. V. (2002). Deconfounding serial recall. Journal of Memory and Language, 46(1), 153–177. doi: https://doi.org/10.1006/jmla.2001.2805 CrossRefGoogle Scholar
  20. Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6(3), 274–290. doi: https://doi.org/10.1177/1745691611406920 CrossRefPubMedGoogle Scholar
  21. Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78–89. doi: https://doi.org/10.1016/j.jmp.2015.10.003 CrossRefGoogle Scholar
  22. Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341–354. doi: https://doi.org/10.1037/0033-295X.85.4.341 CrossRefGoogle Scholar
  23. Dowling, W. J. (1991). Tonal strength and melody recognition after long and short delays. Perception & Psychophysics, 50(4), 305–313. doi: https://doi.org/10.3758/BF03212222 CrossRefGoogle Scholar
  24. Dowling, W. J., Bartlett, J. C., Halpern, A. R., & Andrews, M. W. (2008). Melody recognition at fast and slow tempos: Effects of age, experience, and familiarity. Perception & Psychophysics, 70(3), 496–502. doi: https://doi.org/10.3758/PP.70.3.496 CrossRefGoogle Scholar
  25. Dowling, W. J., & Tillmann, B. (2014). Memory improvement while hearing music. Music Perception: An Interdisciplinary Journal, 32(1), 11–32. doi: https://doi.org/10.1525/mp.2014.32.1.11 CrossRefGoogle Scholar
  26. Edworthy, J. (1985). Interval and contour in melody processing. Music Perception: An Interdisciplinary Journal, 2(3), 375–388. doi: https://doi.org/10.2307/40285305 CrossRefGoogle Scholar
  27. Farrell, S., Hurlstone, M. J., & Lewandowsky, S. (2013). Sequential dependencies in recall of sequences: Filling in the blanks. Memory & Cognition, 41(6), 938–952. doi: https://doi.org/10.3758/s13421-013-0310-0 CrossRefGoogle Scholar
  28. Farrell, S., & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9(1), 59–79. doi: https://doi.org/10.3758/BF03196257 CrossRefGoogle Scholar
  29. Farrell, S., & Lewandowsky, S. (2004). Modelling transposition latencies: Constraints for theories of serial order memory. Journal of Memory and Language, 51(1), 115–135. doi: https://doi.org/10.1016/j.jml.2004.03.007 CrossRefGoogle Scholar
  30. Franklin, M. S., Rattray, K., Sledge Moore, K., Moher, J., Yip, C.-Y., & Jonides, J. (2008). The effects of musical training on verbal memory. Psychology of Music, 36(3), 353–365. doi: https://doi.org/10.1177/0305735607086044 CrossRefGoogle Scholar
  31. Gmeindl, L., Walsh, M., & Courtney, S. M. (2011). Binding serial order to representations in working memory: A spatial/verbal dissociation. Memory & Cognition, 39(1), 37–46. doi: https://doi.org/10.3758/s13421-010-0012-9 CrossRefGoogle Scholar
  32. Gorin, S., Kowialiewski, B., & Majerus, S. (2016). Domain-generality of timing-based serial order processes in short-term memory: New insights from musical and verbal domains. PLoS ONE, 11(12), e0168699. doi: https://doi.org/10.1371/journal.pone.0168699 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gorin, S., Mengal, P., & Majerus, S. (2017). Temporal grouping effects in musical short-term memory. Memory, 1–13.  https://doi.org/10.1080/09658211.2017.1414848
  34. Greene, R. L., & Samuel, A. G. (1986). Recency and suffix effects in serial recall of musical stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(4), 517–524. doi: https://doi.org/10.1037/0278-7393.12.4.517 PubMedGoogle Scholar
  35. Guérard, K., & Tremblay, S. (2008). Revisiting evidence for modularity and functional equivalence across verbal and spatial domains in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 556–569. doi: https://doi.org/10.1037/0278-7393.34.3.556 PubMedGoogle Scholar
  36. Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical competence of musicians and non-musicians. Psychology of Music, 41(6), 779–793. doi: https://doi.org/10.1177/0305735612452186 CrossRefGoogle Scholar
  37. Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken sequences: A model and tests of its stimulus-driven mechanism. Cognitive Psychology, 87, 135–178. doi: https://doi.org/10.1016/j.cogpsych.2016.05.001 CrossRefPubMedGoogle Scholar
  38. Henson, R. N. A. (1996). Short-term memory for serial order (Unpublished doctoral thesis). Cambridge University, Cambridge, UK. Retrieved from http://www.mrc-cbu.cam.ac.uk/people/rik.henson/personal/thesis/
  39. Henson, R. N. A. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology, 36(2), 73–137. doi: https://doi.org/10.1006/cogp.1998.0685 CrossRefPubMedGoogle Scholar
  40. Henson, R. N. A., Hartley, T., Burgess, N., Hitch, G. J., & Flude, B. (2003). Selective interference with verbal short-term memory for serial order information: A new paradigm and tests of a timing-signal hypothesis. The Quarterly Journal of Experimental Psychology Section A, 56(8), 1307–1334. doi: https://doi.org/10.1080/02724980244000747 CrossRefGoogle Scholar
  41. Hurlstone, M. J., & Hitch, G. J. (2015). How is the serial order of a spatial sequence represented? Insights from transposition latencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 295–324. doi: https://doi.org/10.1037/a0038223 PubMedGoogle Scholar
  42. Hurlstone, M. J., & Hitch, G. J. (2017). How is the serial order of a visual sequence represented? Insights from transposition latencies. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: https://doi.org/10.1037/xlm0000440
  43. Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140(2), 339–373. doi: https://doi.org/10.1037/a0034221 CrossRefPubMedGoogle Scholar
  44. JASP Team. (2017). JASP (Version 0.8.1) [Computer software]. Available from https://jasp-stats.org/
  45. Jefferies, E., Frankish, C. R., & Lambon Ralph, M. A. (2006). Lexical and semantic influences on item and order memory in immediate serial recognition: Evidence from a novel task. The Quarterly Journal of Experimental Psychology, 59(5), 949–964. doi: https://doi.org/10.1080/02724980543000141 CrossRefPubMedGoogle Scholar
  46. Johnson, A. J., Shaw, J., & Miles, C. (2016). Tactile order memory: Evidence for sequence learning phenomena found with other stimulus types. Journal of Cognitive Psychology, 28(6), 718–725. doi: https://doi.org/10.1080/20445911.2016.1186676 CrossRefGoogle Scholar
  47. Jones, D. M., Farrand, P., Stuart, G., & Morris, N. (1995). Functional equivalence of verbal and spatial information in serial short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 1008–1018. doi: https://doi.org/10.1037/0278-7393.21.4.1008 PubMedGoogle Scholar
  48. Jones, D. M., & Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: Implications for phonological coding in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(2), 369–381. doi: https://doi.org/10.1037/0278-7393.19.2.369 Google Scholar
  49. Kieras, D. E., Meyer, D. E., Mueller, S., & Seymour, T. (1999). Insights into working memory from the perspective of the EPIC Architecture for Modeling Skilled Perceptual-Motor and Cognitive Human Performance. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 183–223). Cambridge, UK: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781139174909.009 CrossRefGoogle Scholar
  50. Kunert, R., Willems, R. M., & Hagoort, P. (2016). An independent psychometric evaluation of the PROMS Measure of Music Perception Skills. PLoS ONE, 11(7), e0159103. doi: https://doi.org/10.1371/journal.pone.0159103 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Law, L. N. C., & Zentner, M. R. (2012). Assessing musical abilities objectively: Construction and validation of the Profile of Music Perception Skills. PLoS ONE, 7(12), e52508. doi: https://doi.org/10.1371/journal.pone.0052508 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lee, Y., Lu, M., & Ko, H. (2007). Effects of skill training on working memory capacity. Learning and Instruction, 17(3), 336–344. doi: https://doi.org/10.1016/j.learninstruc.2007.02.010 CrossRefGoogle Scholar
  53. Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A pratical course. Cambridge, UK: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781139087759 Google Scholar
  54. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.Google Scholar
  55. Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. In H. R. Brian (Ed.), The psychology of learning and motivation (Vol. 49, pp. 1–48). San Diego, CA: Academic Press. doi: https://doi.org/10.1016/S0079-7421(08)00001-7 Google Scholar
  56. Lewandowsky, S., & Murdock, B. B. (1989). Memory for serial order. Psychological Review, 96(1), 25–57. doi: https://doi.org/10.1037/0033-295X.96.1.25 CrossRefGoogle Scholar
  57. Logie, R. H., Saito, S., Morita, A., Varma, S., & Norris, D. G. (2016). Recalling visual serial order for verbal sequences. Memory & Cognition, 44(4), 590–607. doi: https://doi.org/10.3758/s13421-015-0580-9 CrossRefGoogle Scholar
  58. Majerus, S. (2013). Language repetition and short-term memory: An integrative framework. Frontiers in Human Neuroscience, 7, 357. doi: https://doi.org/10.3389/fnhum.2013.00357 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Majerus, S., Cowan, N., Peters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2016). Cross-modal decoding of neural patterns associated with working memory: Evidence for attention-based accounts of working memory. Cerebral Cortex, 26(1), 166–179. doi: https://doi.org/10.1093/cercor/bhu189 CrossRefPubMedGoogle Scholar
  60. Majerus, S., Poncelet, M., Elsen, B., & van der Linden, M. (2006). Exploring the relationship between new word learning and short-term memory for serial order recall, item recall, and item recognition. European Journal of Cognitive Psychology, 18(6), 848–873. doi: https://doi.org/10.1080/09541440500446476 CrossRefGoogle Scholar
  61. Majerus, S., Poncelet, M., van der Linden, M., & Weekes, B. S. (2008). Lexical learning in bilingual adults: The relative importance of short-term memory for serial order and phonological knowledge. Cognition, 107(2), 395–419. doi: https://doi.org/10.1016/j.cognition.2007.10.003 CrossRefPubMedGoogle Scholar
  62. Mathias, B., Pfordresher, P. Q., & Palmer, C. (2015). Context and meter enhance long-range planning in music performance. Frontiers in Human Neuroscience, 8, 1040. doi: https://doi.org/10.3389/fnhum.2014.01040 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Maybery, M. T., Parmentier, F. B. R., & Jones, D. M. (2002). Grouping of list items reflected in the timing of recall: Implications for models of serial verbal memory. Journal of Memory and Language, 47(3), 360–385. doi: https://doi.org/10.1016/S0749-596X(02)00014-1 CrossRefGoogle Scholar
  64. Mondor, T. A., & Morin, S. R. (2004). Primacy, recency, and suffix effects in auditory short-term memory for pure tones: Evidence from a probe recognition paradigm. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 58(3), 206–219. doi: https://doi.org/10.1037/h0087445 CrossRefPubMedGoogle Scholar
  65. Morey, R. D. (2015). Workshop: Bayesian analysis with BayesFactor. Leuven, Belgium: Katholieke Universiteit Leuven.Google Scholar
  66. Müllensiefen, D., Gingras, B., Musil, J. J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE, 9(2), e89642. doi: https://doi.org/10.1371/journal.pone.0089642 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Oberauer, K. (2003). Understanding serial position curves in short-term recognition and recall. Journal of Memory and Language, 49(4), 469–483. doi: https://doi.org/10.1016/S0749-596X(03)00080-9 CrossRefGoogle Scholar
  68. Ockelford, A. (2007). A music module in working memory? Evidence from the performance of a prodigious musical savant. Musicae Scientiae, 11(2, Suppl), 5–36. doi: https://doi.org/10.1177/10298649070110S202 CrossRefGoogle Scholar
  69. Page, M. P. A., & Norris, D. G. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105(4), 761–781. doi: https://doi.org/10.1037/0033-295X.105.4.761-781 CrossRefPubMedGoogle Scholar
  70. Page, M. P. A., & Norris, D. G. (2009). A model linking immediate serial recall, the Hebb repetition effect and the learning of phonological word forms. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1536), 3737–3753. doi: https://doi.org/10.1098/rstb.2009.0173 CrossRefPubMedCentralGoogle Scholar
  71. Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009). Musician enhancement for speech-in-noise. Ear and Hearing, 30(6), 653–661. doi: https://doi.org/10.1097/AUD.0b013e3181b412e9 CrossRefPubMedGoogle Scholar
  72. Parmentier, F. B. R., Andrés, P., Elford, G., & Jones, D. M. (2006). Organization of visuo-spatial serial memory: Interaction of temporal order with spatial and temporal grouping. Psychological Research Psychologische Forschung, 70(3), 200–217. doi: https://doi.org/10.1007/s00426-004-0212-7 CrossRefPubMedGoogle Scholar
  73. Parmentier, F. B. R., King, S., & Dennis, I. (2006). Local temporal distinctiveness does not benefit auditory verbal and spatial serial recall. Psychonomic Bulletin & Review, 13(3), 458–465. doi: https://doi.org/10.3758/BF03193870 CrossRefGoogle Scholar
  74. Parmentier, F. B. R., Maybery, M. T., & Jones, D. M. (2004). Temporal grouping in auditory spatial serial memory. Psychonomic Bulletin & Review, 11(3), 501–507. doi: https://doi.org/10.3758/BF03196602 CrossRefGoogle Scholar
  75. Pechmann, T., & Mohr, G. (1992). Interference in memory for tonal pitch: Implications for a working-memory model. Memory & Cognition, 20(3), 314–320. doi: https://doi.org/10.3758/BF03199668 CrossRefGoogle Scholar
  76. Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of “tone deafness”. Music Perception: An Interdisciplinary Journal, 25(2), 95–115. doi: https://doi.org/10.1525/mp.2007.25.2.95 CrossRefGoogle Scholar
  77. Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182–2190. doi: https://doi.org/10.1121/1.3478782 CrossRefPubMedGoogle Scholar
  78. Pfordresher, P. Q., Palmer, C., & Jungers, M. K. (2007). Speed, accuracy, and serial order in sequence production. Cognitive Science, 31(1), 63–98. doi: https://doi.org/10.1080/03640210709336985 CrossRefPubMedGoogle Scholar
  79. Plancher, G., Lévêque, Y., Fanuel, L., Piquandet, G., & Tillmann, B. (2017). Boosting maintenance in working memory with temporal regularities. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: https://doi.org/10.1037/xlm0000481
  80. Posner, M. I. (1964). Rate of presentation and order of recall in immediate memory. British Journal of Psychology, 55(3), 303–306. doi: https://doi.org/10.1111/j.2044-8295.1964.tb00914.x CrossRefPubMedGoogle Scholar
  81. Raven, J. C. (1938). Progressive matrices: A perceptual test of intelligence. Oxford, UK: Oxford Psychologists Press.Google Scholar
  82. Rouder, J. N., Engelhardt, C. R., McCabe, S., & Morey, R. D. (2016). Model comparison in ANOVA. Psychonomic Bulletin & Review, 23(6), 1779–1786. doi: https://doi.org/10.3758/s13423-016-1026-5 CrossRefGoogle Scholar
  83. Ryan, J. (1969). Grouping and short-term memory: Different means and patterns of grouping. Quarterly Journal of Experimental Psychology, 21(2), 137–147. doi: https://doi.org/10.1080/14640746908400206 CrossRefPubMedGoogle Scholar
  84. Saito, S. (2001). The phonological loop and memory for rhythms: An individual differences approach. Memory, 9(4/6), 313–322. doi: https://doi.org/10.1080/09658210143000164 CrossRefGoogle Scholar
  85. Saito, S., Logie, R. H., Morita, A., & Law, A. (2008). Visual and phonological similarity effects in verbal immediate serial recall: A test with kanji materials. Journal of Memory and Language, 59(1), 1–17. doi: https://doi.org/10.1016/j.jml.2008.01.004 CrossRefGoogle Scholar
  86. Schendel, Z. A., & Palmer, C. (2007). Suppression effects on musical and verbal memory. Memory & Cognition, 35(4), 640–650. doi: https://doi.org/10.3758/BF03193302 CrossRefGoogle Scholar
  87. Schulze, K., Dowling, W. J., & Tillmann, B. (2012). Working memory for tonal and atonal sequences during a forward and a backward recognition task. Music Perception: An Interdisciplinary Journal, 29(3), 255–267. doi: https://doi.org/10.1525/mp.2012.29.3.255 CrossRefGoogle Scholar
  88. Schulze, K., Mueller, K., & Koelsch, S. (2011). Neural correlates of strategy use during auditory working memory in musicians and non-musicians. European Journal of Neuroscience, 33(1), 189–196. doi: https://doi.org/10.1111/j.1460-9568.2010.07470.x CrossRefPubMedGoogle Scholar
  89. Smyth, M. M., Hay, D. C., Hitch, G. J., & Horton, N. J. (2005). Serial position memory in the visual—spatial domain: Reconstructing sequences of unfamiliar faces. The Quarterly Journal of Experimental Psychology Section A, 58(5), 909–930. doi: https://doi.org/10.1080/02724980443000412 CrossRefGoogle Scholar
  90. Strait, D. L., Kraus, N., Parbery-Clark, A., & Ashley, R. (2010). Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 261(1/2), 22–29. doi: https://doi.org/10.1016/j.heares.2009.12.021 CrossRefPubMedGoogle Scholar
  91. Surprenant, A. M., Kelley, M. R., Farley, L. A., & Neath, I. (2005). Fillin and infill errors in order memory. Memory, 13(3/4), 267–273. doi: https://doi.org/10.1080/09658210344000396 CrossRefPubMedGoogle Scholar
  92. Tan, L., & Ward, G. (2008). Rehearsal in immediate serial recall. Psychonomic Bulletin & Review, 15(3), 535–542. doi: https://doi.org/10.3758/PBR.15.3.535 CrossRefGoogle Scholar
  93. Tremblay, S., Parmentier, F. B. R., Guérard, K., Nicholls, A. P., & Jones, D. M. (2006). A spatial modality effect in serial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(5), 1208–1215. doi: https://doi.org/10.1037/0278-7393.32.5.1208 PubMedGoogle Scholar
  94. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems ofp values. Psychonomic Bulletin & Review, 14(5), 779–804. doi: https://doi.org/10.3758/BF03194105 CrossRefGoogle Scholar
  95. Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), bayesian evaluation of informative hypotheses (pp. 181–207). New York, NY: Springer. doi: https://doi.org/10.1007/978-0-387-09612-4_9 CrossRefGoogle Scholar
  96. Ward, G., Avons, S. E., & Melling, L. (2005). Serial position curves in short-term memory: Functional equivalence across modalities. Memory, 13(3/4), 308–317. doi: https://doi.org/10.1080/09658210344000279 CrossRefPubMedGoogle Scholar
  97. Ward, G., Tan, L., & Grenfell-Essam, R. (2010). Examining the relationship between free recall and immediate serial recall: The effects of list length and output order. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1207–1241. doi: https://doi.org/10.1037/a0020122 PubMedGoogle Scholar
  98. Williamson, V. J., Baddeley, A. D., & Hitch, G. J. (2010). Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory & Cognition, 38(2), 163–175. doi: https://doi.org/10.3758/MC.38.2.163 CrossRefGoogle Scholar
  99. Williamson, V. J., Mitchell, T., Hitch, G. J., & Baddeley, A. D. (2010). Musicians’ memory for verbal and tonal materials under conditions of irrelevant sound. Psychology of Music, 38(3), 331–350. doi: https://doi.org/10.1177/0305735609351918 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of Cognitive DevelopmentUniversité de GenèveGenèveSwitzerland
  2. 2.Psychology and Neuroscience of Cognition Research Unit (PsyNCog)University of LiègeLiègeBelgium
  3. 3.Fund for Scientific Research–FNRSBrusselsBelgium

Personalised recommendations