Memory & Cognition

, Volume 46, Issue 3, pp 464–481 | Cite as

A comparison of serial order short-term memory effects across verbal and musical domains

  • Simon Gorin
  • Pierre Mengal
  • Steve Majerus


Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.


Serial order Working memory Music cognition Musical expertise Language and music 


Author note

This research was supported by the Fund for Scientific Research–FNRS under a FRESH doctoral grant to Simon Gorin; by the Belgian Science Policy Office (BELSPO) under a grant PAI-IUAPP7/11 to Simon Gorin and Steve Majerus; by the University of Liège under a grant ARC12/17/01REST to Steve Majerus.

Authors contributions

The authors’ contributions are reported following the CRediT taxonomy (see Conceptualization: S.G. and S.M.; Formal analysis: S.G.; Funding acquisition: S.G. and S.M.; Investigation: S.G.; Methodology: S.G. and S.M.; Project administration: S.G. and S.M.; Software: P.M.; Supervision: S.G. and S.M.; Validation: S.G.; Visualization: S.G. and S.M.; Writing–original draft: S.G. and S.M.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any competing interest that could be construed as a potential conflict of interest and that the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability

All relevant data are available through the Open Science Framework (

Finally, all the participants provided their written informed consent before starting the experiment, and the study had been approved by the Ethical Board of the Faculty of Psychology, Speech and Language Therapy, and Education of the University of Liège.


  1. Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of list memory. Journal of Memory and Language, 38(4), 341–380. doi: CrossRefGoogle Scholar
  2. Avons, S. E. (1998). Serial report and item recognition of novel visual patterns. British Journal of Psychology, 89(2), 285–308. doi: CrossRefPubMedGoogle Scholar
  3. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation. San Diego, CA: Academic Press.Google Scholar
  4. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133(1), 83–100. doi: CrossRefGoogle Scholar
  5. Berkowska, M., & Dalla Bella, S. (2013). Uncovering phenotypes of poor-pitch singing: The Sung Performance Battery (SPB). Frontiers in Psychology, 4, 714. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berti, S., Münzer, S., Schröger, E., & Pechmann, T. (2006). Different interference effects in musicians and a control group. Experimental Psychology, 53(2), 111–116. doi: CrossRefPubMedGoogle Scholar
  7. Berz, W. L. (1995). Working memory in music: A theoretical model. Music Perception: An Interdisciplinary Journal, 12(3), 353–364. doi: CrossRefGoogle Scholar
  8. Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Frontiers in Psychology, 2, 94. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009). Examining the relationship between free recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word length, presentation rate, and articulatory suppression. Memory & Cognition, 37(5), 689–713. doi: CrossRefGoogle Scholar
  10. Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113(2), 201–233. doi: CrossRefPubMedGoogle Scholar
  11. Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539–576. doi: CrossRefPubMedGoogle Scholar
  12. Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127–181. doi: CrossRefPubMedGoogle Scholar
  13. Burgess, N., & Hitch, G. J. (1992). Toward a network model of the articulatory loop. Journal of Memory and Language, 31(4), 429–460. doi: CrossRefGoogle Scholar
  14. Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106(3), 551–581. doi: CrossRefGoogle Scholar
  15. Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55(4), 627–652. doi: CrossRefGoogle Scholar
  16. Chan, A. S., Ho, Y.-C., & Cheung, M.-C. (1998). Music training improves verbal memory. Nature, 396(6707), 128–128. doi: CrossRefPubMedGoogle Scholar
  17. Cortis, C., Dent, K., Kennett, S., & Ward, G. (2015). First things first: Similar list length and output order effects for verbal and nonverbal stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1179–1214. doi: PubMedGoogle Scholar
  18. Cowan, N. (1995). Attention and memory: An integrated framework. Oxford, UK: Oxford University Press. doi:
  19. Cowan, N., Saults, J. S., Elliott, E. M., & Moreno, M. V. (2002). Deconfounding serial recall. Journal of Memory and Language, 46(1), 153–177. doi: CrossRefGoogle Scholar
  20. Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6(3), 274–290. doi: CrossRefPubMedGoogle Scholar
  21. Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78–89. doi: CrossRefGoogle Scholar
  22. Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341–354. doi: CrossRefGoogle Scholar
  23. Dowling, W. J. (1991). Tonal strength and melody recognition after long and short delays. Perception & Psychophysics, 50(4), 305–313. doi: CrossRefGoogle Scholar
  24. Dowling, W. J., Bartlett, J. C., Halpern, A. R., & Andrews, M. W. (2008). Melody recognition at fast and slow tempos: Effects of age, experience, and familiarity. Perception & Psychophysics, 70(3), 496–502. doi: CrossRefGoogle Scholar
  25. Dowling, W. J., & Tillmann, B. (2014). Memory improvement while hearing music. Music Perception: An Interdisciplinary Journal, 32(1), 11–32. doi: CrossRefGoogle Scholar
  26. Edworthy, J. (1985). Interval and contour in melody processing. Music Perception: An Interdisciplinary Journal, 2(3), 375–388. doi: CrossRefGoogle Scholar
  27. Farrell, S., Hurlstone, M. J., & Lewandowsky, S. (2013). Sequential dependencies in recall of sequences: Filling in the blanks. Memory & Cognition, 41(6), 938–952. doi: CrossRefGoogle Scholar
  28. Farrell, S., & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9(1), 59–79. doi: CrossRefGoogle Scholar
  29. Farrell, S., & Lewandowsky, S. (2004). Modelling transposition latencies: Constraints for theories of serial order memory. Journal of Memory and Language, 51(1), 115–135. doi: CrossRefGoogle Scholar
  30. Franklin, M. S., Rattray, K., Sledge Moore, K., Moher, J., Yip, C.-Y., & Jonides, J. (2008). The effects of musical training on verbal memory. Psychology of Music, 36(3), 353–365. doi: CrossRefGoogle Scholar
  31. Gmeindl, L., Walsh, M., & Courtney, S. M. (2011). Binding serial order to representations in working memory: A spatial/verbal dissociation. Memory & Cognition, 39(1), 37–46. doi: CrossRefGoogle Scholar
  32. Gorin, S., Kowialiewski, B., & Majerus, S. (2016). Domain-generality of timing-based serial order processes in short-term memory: New insights from musical and verbal domains. PLoS ONE, 11(12), e0168699. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gorin, S., Mengal, P., & Majerus, S. (2017). Temporal grouping effects in musical short-term memory. Memory, 1–13.
  34. Greene, R. L., & Samuel, A. G. (1986). Recency and suffix effects in serial recall of musical stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(4), 517–524. doi: PubMedGoogle Scholar
  35. Guérard, K., & Tremblay, S. (2008). Revisiting evidence for modularity and functional equivalence across verbal and spatial domains in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 556–569. doi: PubMedGoogle Scholar
  36. Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical competence of musicians and non-musicians. Psychology of Music, 41(6), 779–793. doi: CrossRefGoogle Scholar
  37. Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken sequences: A model and tests of its stimulus-driven mechanism. Cognitive Psychology, 87, 135–178. doi: CrossRefPubMedGoogle Scholar
  38. Henson, R. N. A. (1996). Short-term memory for serial order (Unpublished doctoral thesis). Cambridge University, Cambridge, UK. Retrieved from
  39. Henson, R. N. A. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology, 36(2), 73–137. doi: CrossRefPubMedGoogle Scholar
  40. Henson, R. N. A., Hartley, T., Burgess, N., Hitch, G. J., & Flude, B. (2003). Selective interference with verbal short-term memory for serial order information: A new paradigm and tests of a timing-signal hypothesis. The Quarterly Journal of Experimental Psychology Section A, 56(8), 1307–1334. doi: CrossRefGoogle Scholar
  41. Hurlstone, M. J., & Hitch, G. J. (2015). How is the serial order of a spatial sequence represented? Insights from transposition latencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 295–324. doi: PubMedGoogle Scholar
  42. Hurlstone, M. J., & Hitch, G. J. (2017). How is the serial order of a visual sequence represented? Insights from transposition latencies. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:
  43. Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140(2), 339–373. doi: CrossRefPubMedGoogle Scholar
  44. JASP Team. (2017). JASP (Version 0.8.1) [Computer software]. Available from
  45. Jefferies, E., Frankish, C. R., & Lambon Ralph, M. A. (2006). Lexical and semantic influences on item and order memory in immediate serial recognition: Evidence from a novel task. The Quarterly Journal of Experimental Psychology, 59(5), 949–964. doi: CrossRefPubMedGoogle Scholar
  46. Johnson, A. J., Shaw, J., & Miles, C. (2016). Tactile order memory: Evidence for sequence learning phenomena found with other stimulus types. Journal of Cognitive Psychology, 28(6), 718–725. doi: CrossRefGoogle Scholar
  47. Jones, D. M., Farrand, P., Stuart, G., & Morris, N. (1995). Functional equivalence of verbal and spatial information in serial short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 1008–1018. doi: PubMedGoogle Scholar
  48. Jones, D. M., & Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: Implications for phonological coding in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(2), 369–381. doi: Google Scholar
  49. Kieras, D. E., Meyer, D. E., Mueller, S., & Seymour, T. (1999). Insights into working memory from the perspective of the EPIC Architecture for Modeling Skilled Perceptual-Motor and Cognitive Human Performance. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 183–223). Cambridge, UK: Cambridge University Press. doi: CrossRefGoogle Scholar
  50. Kunert, R., Willems, R. M., & Hagoort, P. (2016). An independent psychometric evaluation of the PROMS Measure of Music Perception Skills. PLoS ONE, 11(7), e0159103. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  51. Law, L. N. C., & Zentner, M. R. (2012). Assessing musical abilities objectively: Construction and validation of the Profile of Music Perception Skills. PLoS ONE, 7(12), e52508. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lee, Y., Lu, M., & Ko, H. (2007). Effects of skill training on working memory capacity. Learning and Instruction, 17(3), 336–344. doi: CrossRefGoogle Scholar
  53. Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A pratical course. Cambridge, UK: Cambridge University Press. doi: Google Scholar
  54. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.Google Scholar
  55. Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. In H. R. Brian (Ed.), The psychology of learning and motivation (Vol. 49, pp. 1–48). San Diego, CA: Academic Press. doi: Google Scholar
  56. Lewandowsky, S., & Murdock, B. B. (1989). Memory for serial order. Psychological Review, 96(1), 25–57. doi: CrossRefGoogle Scholar
  57. Logie, R. H., Saito, S., Morita, A., Varma, S., & Norris, D. G. (2016). Recalling visual serial order for verbal sequences. Memory & Cognition, 44(4), 590–607. doi: CrossRefGoogle Scholar
  58. Majerus, S. (2013). Language repetition and short-term memory: An integrative framework. Frontiers in Human Neuroscience, 7, 357. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  59. Majerus, S., Cowan, N., Peters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2016). Cross-modal decoding of neural patterns associated with working memory: Evidence for attention-based accounts of working memory. Cerebral Cortex, 26(1), 166–179. doi: CrossRefPubMedGoogle Scholar
  60. Majerus, S., Poncelet, M., Elsen, B., & van der Linden, M. (2006). Exploring the relationship between new word learning and short-term memory for serial order recall, item recall, and item recognition. European Journal of Cognitive Psychology, 18(6), 848–873. doi: CrossRefGoogle Scholar
  61. Majerus, S., Poncelet, M., van der Linden, M., & Weekes, B. S. (2008). Lexical learning in bilingual adults: The relative importance of short-term memory for serial order and phonological knowledge. Cognition, 107(2), 395–419. doi: CrossRefPubMedGoogle Scholar
  62. Mathias, B., Pfordresher, P. Q., & Palmer, C. (2015). Context and meter enhance long-range planning in music performance. Frontiers in Human Neuroscience, 8, 1040. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  63. Maybery, M. T., Parmentier, F. B. R., & Jones, D. M. (2002). Grouping of list items reflected in the timing of recall: Implications for models of serial verbal memory. Journal of Memory and Language, 47(3), 360–385. doi: CrossRefGoogle Scholar
  64. Mondor, T. A., & Morin, S. R. (2004). Primacy, recency, and suffix effects in auditory short-term memory for pure tones: Evidence from a probe recognition paradigm. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 58(3), 206–219. doi: CrossRefPubMedGoogle Scholar
  65. Morey, R. D. (2015). Workshop: Bayesian analysis with BayesFactor. Leuven, Belgium: Katholieke Universiteit Leuven.Google Scholar
  66. Müllensiefen, D., Gingras, B., Musil, J. J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE, 9(2), e89642. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  67. Oberauer, K. (2003). Understanding serial position curves in short-term recognition and recall. Journal of Memory and Language, 49(4), 469–483. doi: CrossRefGoogle Scholar
  68. Ockelford, A. (2007). A music module in working memory? Evidence from the performance of a prodigious musical savant. Musicae Scientiae, 11(2, Suppl), 5–36. doi: CrossRefGoogle Scholar
  69. Page, M. P. A., & Norris, D. G. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105(4), 761–781. doi: CrossRefPubMedGoogle Scholar
  70. Page, M. P. A., & Norris, D. G. (2009). A model linking immediate serial recall, the Hebb repetition effect and the learning of phonological word forms. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1536), 3737–3753. doi: CrossRefPubMedCentralGoogle Scholar
  71. Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009). Musician enhancement for speech-in-noise. Ear and Hearing, 30(6), 653–661. doi: CrossRefPubMedGoogle Scholar
  72. Parmentier, F. B. R., Andrés, P., Elford, G., & Jones, D. M. (2006). Organization of visuo-spatial serial memory: Interaction of temporal order with spatial and temporal grouping. Psychological Research Psychologische Forschung, 70(3), 200–217. doi: CrossRefPubMedGoogle Scholar
  73. Parmentier, F. B. R., King, S., & Dennis, I. (2006). Local temporal distinctiveness does not benefit auditory verbal and spatial serial recall. Psychonomic Bulletin & Review, 13(3), 458–465. doi: CrossRefGoogle Scholar
  74. Parmentier, F. B. R., Maybery, M. T., & Jones, D. M. (2004). Temporal grouping in auditory spatial serial memory. Psychonomic Bulletin & Review, 11(3), 501–507. doi: CrossRefGoogle Scholar
  75. Pechmann, T., & Mohr, G. (1992). Interference in memory for tonal pitch: Implications for a working-memory model. Memory & Cognition, 20(3), 314–320. doi: CrossRefGoogle Scholar
  76. Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of “tone deafness”. Music Perception: An Interdisciplinary Journal, 25(2), 95–115. doi: CrossRefGoogle Scholar
  77. Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182–2190. doi: CrossRefPubMedGoogle Scholar
  78. Pfordresher, P. Q., Palmer, C., & Jungers, M. K. (2007). Speed, accuracy, and serial order in sequence production. Cognitive Science, 31(1), 63–98. doi: CrossRefPubMedGoogle Scholar
  79. Plancher, G., Lévêque, Y., Fanuel, L., Piquandet, G., & Tillmann, B. (2017). Boosting maintenance in working memory with temporal regularities. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:
  80. Posner, M. I. (1964). Rate of presentation and order of recall in immediate memory. British Journal of Psychology, 55(3), 303–306. doi: CrossRefPubMedGoogle Scholar
  81. Raven, J. C. (1938). Progressive matrices: A perceptual test of intelligence. Oxford, UK: Oxford Psychologists Press.Google Scholar
  82. Rouder, J. N., Engelhardt, C. R., McCabe, S., & Morey, R. D. (2016). Model comparison in ANOVA. Psychonomic Bulletin & Review, 23(6), 1779–1786. doi: CrossRefGoogle Scholar
  83. Ryan, J. (1969). Grouping and short-term memory: Different means and patterns of grouping. Quarterly Journal of Experimental Psychology, 21(2), 137–147. doi: CrossRefPubMedGoogle Scholar
  84. Saito, S. (2001). The phonological loop and memory for rhythms: An individual differences approach. Memory, 9(4/6), 313–322. doi: CrossRefGoogle Scholar
  85. Saito, S., Logie, R. H., Morita, A., & Law, A. (2008). Visual and phonological similarity effects in verbal immediate serial recall: A test with kanji materials. Journal of Memory and Language, 59(1), 1–17. doi: CrossRefGoogle Scholar
  86. Schendel, Z. A., & Palmer, C. (2007). Suppression effects on musical and verbal memory. Memory & Cognition, 35(4), 640–650. doi: CrossRefGoogle Scholar
  87. Schulze, K., Dowling, W. J., & Tillmann, B. (2012). Working memory for tonal and atonal sequences during a forward and a backward recognition task. Music Perception: An Interdisciplinary Journal, 29(3), 255–267. doi: CrossRefGoogle Scholar
  88. Schulze, K., Mueller, K., & Koelsch, S. (2011). Neural correlates of strategy use during auditory working memory in musicians and non-musicians. European Journal of Neuroscience, 33(1), 189–196. doi: CrossRefPubMedGoogle Scholar
  89. Smyth, M. M., Hay, D. C., Hitch, G. J., & Horton, N. J. (2005). Serial position memory in the visual—spatial domain: Reconstructing sequences of unfamiliar faces. The Quarterly Journal of Experimental Psychology Section A, 58(5), 909–930. doi: CrossRefGoogle Scholar
  90. Strait, D. L., Kraus, N., Parbery-Clark, A., & Ashley, R. (2010). Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 261(1/2), 22–29. doi: CrossRefPubMedGoogle Scholar
  91. Surprenant, A. M., Kelley, M. R., Farley, L. A., & Neath, I. (2005). Fillin and infill errors in order memory. Memory, 13(3/4), 267–273. doi: CrossRefPubMedGoogle Scholar
  92. Tan, L., & Ward, G. (2008). Rehearsal in immediate serial recall. Psychonomic Bulletin & Review, 15(3), 535–542. doi: CrossRefGoogle Scholar
  93. Tremblay, S., Parmentier, F. B. R., Guérard, K., Nicholls, A. P., & Jones, D. M. (2006). A spatial modality effect in serial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(5), 1208–1215. doi: PubMedGoogle Scholar
  94. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems ofp values. Psychonomic Bulletin & Review, 14(5), 779–804. doi: CrossRefGoogle Scholar
  95. Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), bayesian evaluation of informative hypotheses (pp. 181–207). New York, NY: Springer. doi: CrossRefGoogle Scholar
  96. Ward, G., Avons, S. E., & Melling, L. (2005). Serial position curves in short-term memory: Functional equivalence across modalities. Memory, 13(3/4), 308–317. doi: CrossRefPubMedGoogle Scholar
  97. Ward, G., Tan, L., & Grenfell-Essam, R. (2010). Examining the relationship between free recall and immediate serial recall: The effects of list length and output order. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1207–1241. doi: PubMedGoogle Scholar
  98. Williamson, V. J., Baddeley, A. D., & Hitch, G. J. (2010). Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory & Cognition, 38(2), 163–175. doi: CrossRefGoogle Scholar
  99. Williamson, V. J., Mitchell, T., Hitch, G. J., & Baddeley, A. D. (2010). Musicians’ memory for verbal and tonal materials under conditions of irrelevant sound. Psychology of Music, 38(3), 331–350. doi: CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of Cognitive DevelopmentUniversité de GenèveGenèveSwitzerland
  2. 2.Psychology and Neuroscience of Cognition Research Unit (PsyNCog)University of LiègeLiègeBelgium
  3. 3.Fund for Scientific Research–FNRSBrusselsBelgium

Personalised recommendations