Advertisement

Memory & Cognition

, Volume 46, Issue 3, pp 337–348 | Cite as

Chess knowledge predicts chess memory even after controlling for chess experience: Evidence for the role of high-level processes

  • David M. Lane
  • Yu-Hsuan A. Chang
Article

Abstract

The expertise effect in memory for chess positions is one of the most robust effects in cognitive psychology. One explanation of this effect is that chess recall is based on the recognition of familiar patterns and that experts have learned more and larger patterns. Template theory and its instantiation as a computational model are based on this explanation. An alternative explanation is that the expertise effect is due, in part, to stronger players having better and more conceptual knowledge, with this knowledge facilitating memory performance. Our literature review supports the latter view. In our experiment, a sample of 79 chess players were given a test of memory for chess positions, a test of declarative chess knowledge, a test of fluid intelligence, and a questionnaire concerning the amount of time they had played nontournament chess and the amount of time they had studied chess. We determined the numbers of tournament games the players had played from chess databases. Chess knowledge correlated .67 with chess memory and accounted for 16% of the variance after controlling for chess experience. Fluid intelligence accounted for an additional 13% of the variance. These results support the conclusion that both high-level conceptual processing and low-level recognition of familiar patterns play important roles in memory for chess positions.

Keywords

Chess Memory Expertise Knowledge CHREST 

References

  1. Baddeley, A. D., & Hitch, G. J. (2017). Is the levels of processing effect language-limited? Journal of Memory and Language, 92, 1–13.CrossRefGoogle Scholar
  2. Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, UK: Cambridge University Press.Google Scholar
  3. Binet, A. (1966). Mnemonic virtuosity: A study of chess players [Trans. M. L. Simmel & S. B. Barron]. Genetic Psychology Monographs, 74, 127–162.PubMedGoogle Scholar
  4. Box, G. E. (1976). Science and statistics. Journal of the American Statistical Association, 71, 791–799.CrossRefGoogle Scholar
  5. Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11, 717–726.CrossRefGoogle Scholar
  6. Burgoyne, A. P., Sala, G., Gobet, F., Macnamara, B. N., Campitelli, G., & Hambrick, D. Z. (2016). The relationship between cognitive ability and chess skill: A comprehensive meta-analysis. Intelligence, 59, 72–83.  https://doi.org/10.1016/j.intell.2016.08.002 CrossRefGoogle Scholar
  7. Chabris, C, & Simons, D. (1998). Chess expertise: Extraordinary memory for chess positions. Accessed from https://youtu.be/rWuJqCwfjjc on 3/2/17.
  8. Chang, Y. (2016). It takes more than practice and experience to become a chess master: Evidence from a child prodigy and from adult tournament players (Doctoral Dissertation). Rice University, Houston, TX.Google Scholar
  9. Charness, N. (1976). Memory for chess positions: Resistance to interference. Journal of Experimental Psychology: Human Learning and Memory, 2, 641–653.Google Scholar
  10. Charness, N. (1981). Aging and skilled problem solving. Journal of Experimental Psychology: General, 110, 21–38.CrossRefGoogle Scholar
  11. Charness, N. (2012). Patterns of theorizing about chess skill—Commentary on Linhares and Freitas (2010) and Lane and Gobet (2011). New Ideas in Psychology, 30, 322–324.CrossRefGoogle Scholar
  12. Charness, N., Tuffiash, M., Krampe, R., Reingold, E., & Vasyukova, E. (2005). The role of deliberate practice in chess expertise. Applied Cognitive Psychology, 19, 151–165.CrossRefGoogle Scholar
  13. Chase, W. G., & Simon, H. A. (1973). The mind’s eye in chess. In W. G. Chase (Ed.), Visual information processing (pp. 215–281). New York, NY: Academic Press.CrossRefGoogle Scholar
  14. Chassy, P., & Gobet, F. (2011). Measuring chess experts’ single-use sequence knowledge: An archival study of departure from “theoretical” openings. PLoS ONE, 6, e26692.  https://doi.org/10.1371/journal.pone.0026692 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chuderski, A., Stettner, Z., & Orzechowski, J. (2007). Computational modeling of individual differences in short term memory search. Cognitive Systems Research, 8, 161–173.CrossRefGoogle Scholar
  16. Cooke, N. J., Atlas, R. S., Lane, D. M., & Berger, R. C. (1993). Role of high-level knowledge in memory for chess positions. American Journal of Psychology, 106, 321–351.CrossRefGoogle Scholar
  17. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–684.  https://doi.org/10.1016/S0022-5371(72)80001-X CrossRefGoogle Scholar
  18. Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268–294.  https://doi.org/10.1037/0096-3445.104.3.268 CrossRefGoogle Scholar
  19. de Groot, A. D. (1965). Thought and choice in chess. The Hague, The Netherlands: Mouton.Google Scholar
  20. Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological Bulletin, 53, 134–140.CrossRefPubMedGoogle Scholar
  21. Estes, W. K., & Maddox, W. T. (2005). Risks of drawing inferences about cognitive processes from model fits to individual versus average performance. Psychonomic Bulletin & Review, 12, 403–408.  https://doi.org/10.3758/BF03193784 CrossRefGoogle Scholar
  22. Euwe, M. (1953). Judgment and planning in chess. New York, NY: David McKay.Google Scholar
  23. Feigenbaum, E. A. (1961). The simulation of verbal learning behavior. In Proceedings of the 1961 Western Joint Computer Conference (Vol. 19, pp. 121–132). New York, NY: ACM.Google Scholar
  24. Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning. Cognitive Science, 8, 305–336.CrossRefGoogle Scholar
  25. Frey, P. W., & Adesman, P. (1976). Recall memory for visually presented chess positions. Memory & Cognition, 4, 541–547.CrossRefGoogle Scholar
  26. Gobet, F. (1994). Memory in chess players: Chunks, schemata, or both? (Complex Information Processing Working Paper No. 517). Pittsburgh, PA: Department of Psychology, Carnegie Mellon University.Google Scholar
  27. Gobet, F. (1996). Chess players’ memory and perception: Recent work. In A. D. de Groot, F. Gobet, & R. W. Jongman (Eds.), Perception and memory in chess: Studies in the heuristics of the professional eye (pp. 97–119). Assen, The Netherlands: Van Gorcum.Google Scholar
  28. Gobet, F. (1998a). Expert memory: A comparison of four theories. Cognition, 66, 115–152.CrossRefPubMedGoogle Scholar
  29. Gobet, F. (1998b). Memory for the meaningless: How chunks help. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 398–403). Mahwah, NJ: Erlbaum.Google Scholar
  30. Gobet, F. (2013). Chunks and templates in semantic long-term memory: The importance of specialization. In J. J. Staszewski (Ed.), Expertise and skill acquisition: The impact of William G. Chase (pp. 117–146). New York, NY: Psychology Press.Google Scholar
  31. Gobet, F. (2016). Understanding expertise: A multi-disciplinary approach. New York, NY: Palgrave Macmillan.CrossRefGoogle Scholar
  32. Gobet F., & Campitelli, G. (2007). The role of domain-specific practice, handedness and starting age in chess. Developmental Psychology, 43, 159–172.CrossRefPubMedGoogle Scholar
  33. Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four . . . or is it two? Memory, 12, 732–747.CrossRefPubMedGoogle Scholar
  34. Gobet, F., & Lane, P. C. (2005). The CHREST architecture of cognition: Listening to empirical data. In D. N. Davis (Ed.), Visions of mind: Architectures for cognition and affect (pp. 204–224). Hershey, PA: Information Science Publishing.CrossRefGoogle Scholar
  35. Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.CrossRefPubMedGoogle Scholar
  36. Gobet, F., Lane, P. C., & Lloyd-Kelly, M. (2015). Chunks, schemata, and retrieval structures: Past and current computational models. Frontiers in Psychology, 6, 1785.  https://doi.org/10.3389/fpsyg.2015.01785 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gobet, F., & Ritter, F. E. (2000). Individual data analysis and Unified Theories of Cognition: A methodological proposal. In N. Taatgen & J. Aasman (Eds.), Proceedings of the 3rd International Conference on Cognitive Modeling (pp. 150–157). Veenendaal, The Netherlands: Universal Press.Google Scholar
  38. Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 1–40.CrossRefPubMedGoogle Scholar
  39. Gobet, F., & Simon, H. A. (2000). Five seconds or sixty? Presentation time in expert memory. Cognitive Science, 24, 651–682.CrossRefGoogle Scholar
  40. Goldin, S. E. (1978). Effects of orienting tasks on recognition of chess positions. American Journal of Psychology, 91, 659–671.CrossRefPubMedGoogle Scholar
  41. Goldin, S. E. (1979). Recognition memory for chess positions: Some preliminary research. American Journal of Psychology, 92, 19–31.  https://doi.org/10.2307/1421476 CrossRefGoogle Scholar
  42. Gong, Y., Ericsson, K. A., & Moxley, J. H. (2015). Recall of briefly presented chess positions and its relation to chess skill. PLoS ONE, 10, e0118756.  https://doi.org/10.1371/journal.pone.0118756 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hyde, T. S., & Jenkins, J. J. (1969). Differential effects of incidental tasks on the organization of recall of a list of highly associated words. Journal of Experimental Psychology, 82, 472–481.CrossRefGoogle Scholar
  44. James, W. (1899). Talks to teachers about psychology. New York, NY: Henry Holt & Co.Google Scholar
  45. Jenkins, J. J. (1974). Can we have a theory of meaningful memory? In R. L. Solso (Ed.), Theories in cognitive psychology: The Loyola Symposium (pp. 1–20). Potomac, MD: ErlbaumGoogle Scholar
  46. Kaneda, T., Shigemune, Y., & Tsukiura, T. (2017). Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding. Cognitive, Affective, & Behavioral Neuroscience, 17, 143–157.CrossRefGoogle Scholar
  47. Krechevsky, I. (1932). “Hypotheses” in rats. Psychological Review, 39, 516–532.  https://doi.org/10.1037/h0073500 CrossRefGoogle Scholar
  48. Lane, D. M., & Robertson, L. (1979). The generality of the levels of processing hypothesis: An application to memory for chess positions. Memory & Cognition, 7, 253–256.CrossRefGoogle Scholar
  49. Lawrence, D. H. (1949). Acquired distinctiveness of cues: I. Transfer between discriminations on the basis of familiarity with the stimulus. Journal of Experimental Psychology, 39, 770–784.CrossRefPubMedGoogle Scholar
  50. Linhares, A., Freitas, A. E. T., Mendes, A., & Silva, J. S. (2012). Entanglement of perception and reasoning in the combinatorial game of chess: Differential errors of strategic reconstruction. Cognitive Systems Research, 13, 72–86.CrossRefGoogle Scholar
  51. Lories, G. (1987). Recall of random and non random chess positions in strong and weak chess players. Psychologica Belgica, 27, 153–159.Google Scholar
  52. Navarro, D. J., Griffiths, T. L., Steyvers, M., & Lee, M. D. (2006). Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology, 50, 101–122.  https://doi.org/10.1016/j.jmp.2005.11.006 CrossRefGoogle Scholar
  53. Pfau, H. D., & Murphy, M. D. (1988). Role of verbal knowledge in chess skill. American Journal of Psychology, 101, 73–86.CrossRefGoogle Scholar
  54. Richman, H. B., Staszewski, J. J., & Simon, H. A. (1995). Simulation of expert memory using EPAM IV. Psychological Review, 102, 305–330.  https://doi.org/10.1037/0033-295X.102.2.305 CrossRefPubMedGoogle Scholar
  55. Roediger, H. L., Meade, M. L., Gallo, D. A., & Olson, K. R. (2014). Bartlett revisited: Direct comparison of repeated reproduction and serial reproduction techniques. Journal of Applied Research in Memory and Cognition, 3, 266–271.CrossRefGoogle Scholar
  56. Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. (2008). A hierarchical process-dissociation model. Journal of Experimental Psychology: General, 137, 370–389.  https://doi.org/10.1037/0096-3445.137.2.370 CrossRefGoogle Scholar
  57. Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In. R. Spiro, B. Bruce, & W. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 33–58). Mahwah, NJ: Erlbaum.Google Scholar
  58. Saariluoma, P. (2001). Chess and content-oriented psychology of thinking. Psicológica, 22, 143–164.Google Scholar
  59. Saariluoma, P., & Kalakoski, V. (1998). Apperception and imagery in blindfold chess. Memory, 6, 67–90.CrossRefPubMedGoogle Scholar
  60. Sala, G., Burgoyne, A. P., Macnamara, B. N., Hambrick, D. Z., Campitelli, G., & Gobet, F. (2017). Checking the “Academic Selection” argument: Chess players outperform non-chess players in cognitive skills related to intelligence. A meta-analysis. Intelligence, 61, 130–139.CrossRefGoogle Scholar
  61. Sala, G., & Gobet, F. (2017). Experts’ memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis. Memory & Cognition, 45, 183–193.  https://doi.org/10.3758/s13421-016-0663-2 CrossRefGoogle Scholar
  62. Schultetus, R. S., & Charness, N. (1999). Recall or evaluation of chess positions revisited: The relationship between memory and evaluation in chess skill. American Journal of Psychology, 112, 555–569.CrossRefPubMedGoogle Scholar
  63. Simon, H. A., & Gilmartin, K. (1973). A simulation of memory for chess positions. Cognitive Psychology, 5, 29–46.CrossRefGoogle Scholar
  64. Simon, H. A., & Gobet, F. (2000). Expertise effects in memory recall: A reply to Vicente and Wang. Psychological Review, 107, 593–600.  https://doi.org/10.1037/0033-295X.107.3.593 CrossRefPubMedGoogle Scholar
  65. Spence, K. W. (1936). The nature of discrimination learning in animals. Psychological Review, 43, 427–449.CrossRefGoogle Scholar
  66. van der Maas, H. L. J., & Wagenmakers, E.-J. (2005). A psychometric analysis of chess expertise. American Journal of Psychology, 118, 29–60.PubMedGoogle Scholar
  67. Velleman, P. F., & Welsch, R. E. (1981). Efficient computing of regression diagnostics. American Statistician, 35, 234–242.Google Scholar
  68. Vicente, K. J. (2000). Revisiting the constraint attunement hypothesis: Reply to Ericsson, Patel, and Kintsch (2000) and Simon and Gobet (2000). Psychological Review, 107, 601–608.  https://doi.org/10.1037/0033-295X.107.3.601 CrossRefPubMedGoogle Scholar
  69. Wilcox, R. R., & Keselman, H. J (2003). Modern robust data analysis methods: Measures of central tendency. Psychological Methods, 8, 254–274.  https://doi.org/10.1037/1082-989X.8.3.254 CrossRefPubMedGoogle Scholar
  70. Zeaman, D., & House, B. J. (1963). The role of attention in retardate discrimination learning. In N. R. Ellis (Ed.), Handbook of mental deficiency: Psychological theory and research (pp. 159–223). New York, NY: McGraw-Hill.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA
  2. 2.Department of Psychology, MS-25Rice UniversityHoustonUSA

Personalised recommendations