Mixed effects modeling of Morris water maze data revisited: Bayesian censored regression

Abstract

Young, Clark, Goffus, and Hoane (Learning and Motivation, 40(2), 160–177, 2009) documented significant advantages of linear and nonlinear mixed-effects modeling in the analysis of Morris water maze data. However, they also noted a caution regarding the impact of the common practice of ending a trial when the rat had not reached the platform by a preestablished deadline. The present study revisits their conclusions by considering a new approach that involves multilevel (i.e., mixed effects) censored generalized linear regression using Bayesian analysis. A censored regression explicitly models the censoring created by prematurely ending a trial, and the use of generalized linear regression incorporates the skewed distribution of latency data as well as the nonlinear relationships this can produce. This approach is contrasted with a standard multilevel linear and nonlinear regression using two case studies. The censored generalized linear regression better models the observed relationships, but the linear regression created mixed results and clearly resulted in model misspecification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V., & van der Sluis, S. (2014). A solution to dependency: Using multilevel analysis to accommodate nested data. Nature Neuroscience, 17(4), 491–496. https://doi.org/10.1038/nn.3648

    Article  PubMed  Google Scholar 

  2. Andersen, C. R., Wolf, J., Jennings, K., Prough, D. S., & Hawkins, B. E. (in press). Accelerated failure time survival model to analyze Morris water maze latency data. Journal of Neurotrauma. https://doi.org/10.1089/neu.2020.7089.

  3. Bürkner, P. C. (2017). brms: An R package for Bayesian generalized linear mixed models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

    Article  Google Scholar 

  4. Bürkner, P. C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017

    Article  Google Scholar 

  5. Cooper, T., Liew, A., Andrle, G., Cafritz, T., Dallas, H., Niesen, T., Slater, E., … Mendelson, J., III. (2019). Latency in problem solving as evidence for learning in varanid and helodermatid lizards, with comments on foraging techniques. Copeia, 107(1), 78–84. https://doi.org/10.1643/CH-18-119

    Article  Google Scholar 

  6. Dixon, P. (2008). Models of accuracy in repeated-measures design. Journal of Memory and Language, 59(4), 447–456. https://doi.org/10.1016/j.jml.2007.11.004

    Article  Google Scholar 

  7. Faes, C., Aerts, M., Geys, H., & De Schaepdrijver, L. (2010). Modeling spatial learning in rats based on Morris water maze experiments. Pharmaceutical Statistics, 9(1), 10–20. https://doi.org/10.1002/pst.361

  8. Franck, C. T., Koffarnus, M. N., McKerchar, T. L., & Bickel, W. K. (2019). An overview of Bayesian reasoning in the analysis of delay-discounting data. Journal of the Experimental Analysis of Behavior, 111(2), 239–251. https://doi.org/10.1002/jeab.504

    Article  PubMed  Google Scholar 

  9. Gelman, A. (2004). Parameterization and Bayesian modeling. Journal of the American Statistical Association, 99(466), 537–545. https://doi.org/10.1198/016214504000000458

    Article  Google Scholar 

  10. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton: CRC.

    Google Scholar 

  11. Jahn-Eimermacher, A., Lasarzik, I., & Raber, J. (2011). Statistical analysis of latency outcomes in behavioral experiments. Behavioral Brain Research, 221(1), 271–275. https://doi.org/10.1016/j.bbr.2011.03.007

    Article  Google Scholar 

  12. Kruschke, J. K. (2014). Doing Bayesian data analysis. Elsevier.

  13. Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25(1), 155–177. https://doi.org/10.3758/s13423-017-1272-1

    Article  Google Scholar 

  14. Ntzoufras, I. (2011). Bayesian modeling using WinBUGS. Hoboken, NJ.: Wiley. https://doi.org/10.1002/9780470434567

    Google Scholar 

  15. Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24–36.

    Article  Google Scholar 

  16. Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General, 123(1), 34–80. https://doi.org/10.1037/0096-3445.123.1.34.

  17. Young, M. E. (2016). The problem with categorical thinking by psychologists. Behavioural Processes, 123, 43–53. https://doi.org/10.1016/j.beproc.2015.09.009

    Article  PubMed  Google Scholar 

  18. Young, M. E. (2017). Discounting: A practical guide to multilevel analysis of indifference data. Journal of the Experimental Analysis of Behavior, 108(1), 97–112. https://doi.org/10.1002/jeab.265

    Article  PubMed  Google Scholar 

  19. Young, M. E. (2019). Bayesian data analysis as a tool for behavior analysts. Journal of the Experimental Analysis of Behavior, 111(2), 225–238. https://doi.org/10.1002/jeab.512

    Article  PubMed  Google Scholar 

  20. Young, M. E., Clark, M. H., Goffus, A., & Hoane, M. R. (2009). Mixed effects modeling of Morris water maze data: Advantages and cautionary notes. Learning and Motivation, 40(2), 160–177. https://doi.org/10.1016/j.lmot.2008.10.004

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the Cognitive and Neurobiological Approaches to Plasticity (CNAP) Center of Biomedical Research Excellence (COBRE) of the National Institutes of Health under Grant Number P20GM113109.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael E. Young.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Young, M.E., Hoane, M.R. Mixed effects modeling of Morris water maze data revisited: Bayesian censored regression. Learn Behav (2021). https://doi.org/10.3758/s13420-020-00457-y

Download citation

Keywords

  • Memory
  • Morris water maze
  • Data analysis
  • Censored regression
  • Bayesian analysis