Skip to main content

Neural correlates of acceptance and rejection in online speed dating: An electroencephalography study

A Correction to this article was published on 01 October 2021

This article has been updated

Abstract

Pursuing dating relationships is important for many people’s well-being, because it helps them fulfill the need for stable social relationships. However, the neural underpinnings of decision-making processes during the pursuit of dating interactions are unclear. In the present study, we used a novel online speed dating paradigm where participants (undergraduate students, N = 25, aged 18–25 years, 52% female) received direct information about acceptance or rejection of their various speed dates. We recorded EEG measurements during speed dating feedback anticipation and feedback processing stages to examine the stimulus preceding negativity (SPN) and feedback-related brain activity (Reward Positivity, RewP, and theta oscillatory power). The results indicated that the SPN was larger when participants anticipated interest versus disinterest from their speed dates. A larger RewP was observed when participants received interest from their speed dates. Theta power was increased when participants received rejection from their speed dates. This theta response could be source-localized to brain areas that overlap with the physical pain matrix (anterior cingulate cortex, dorsolateral prefrontal cortex, and the supplementary motor area). This study demonstrates that decision-making processes—as evident in a speed date experiment—are characterized by distinct neurophysiological responses during anticipating an evaluation and processing thereof. Our results corroborate the involvement of the SPN in reward anticipation, RewP in reward processing and mid-frontal theta power in processing of negative social-evaluative feedback. These findings contribute to a better understanding of the neurocognitive mechanisms implicated in decision-making processes when pursuing dating relationships.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

Notes

  1. 1.

    Participants were divided into two groups according to whether they had been in a romantic relationship or not, which was used as a between-subject variable for subsequent analysis (behavioral data analysis and EEG data analysis). The main effects of the group were not significant (all ps > 0.151), and the interactions of any factor with the group were not significant (all ps > 0.086).

  2. 2.

    The split-half reliability was used to measure the internal consistency of the SPN and RewP at pooled electrodes (Fz, FCz, Fz). The odd and even trials are averaged and the correlation between the two is calculated (Threadgill et al., 2020), corrected using the Spearman-Brown prophecy formula (Nunnally et al., 1967). Spearman-Brown corrected split-half r of RewP for Match = 0.96, Rejection = 0.92, Unrequited = 0.89, and Disinterest = 0.92, and SPN for Yes judgment = 0.83 and No judgment = 0.84.

  3. 3.

    This grand-grand average method of determining the electrode of interest is in line with prior studies on the SPN (van der Molen et al., 2014), as well as with recommended methodology for determining electrodes for analyzing ERP peak amplitudes (Kappenman & Luck, 2016).

  4. 4.

    This positivity in the feedback-related ERP was already evident around the P2 component, so our RewP measure might have been subject to component overlap. However, PCA analysis revealed a distinct positive component with central dominance that yielded similar results as described for the RewP in this study (see Supplementary Material for details).

  5. 5.

    From here on we use the term potential dates to refer to speed dates that participants were romantically interested in, and nonpotential dates to refer to speed dates that participants were not romantically interested in.

References

  1. Acevedo, B. P., & Aron, A. P. (2014). Romantic love, pair-bonding, and the dopaminergic reward system. Mechanisms of Social Connection: From Brain to Group, 55–70. https://doi.org/10.1037/14250-004

  2. Acevedo, B. P., Aron, A., Fisher, H. E., & Brown, L. L. (2012). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, 7(2), 145–159.

    Article  Google Scholar 

  3. Ait Oumeziane, B., Schryer-Praga, J., & Foti, D. (2017). “Why don’t they ‘like’ me more?”: Comparing the time courses of social and monetary reward processing. Neuropsychologia, 107, 48–59. https://doi.org/10.1016/j.neuropsychologia.2017.11.001

    Article  PubMed  Google Scholar 

  4. Ambrosini, E., Vallesi, A. 2016. Asymmetry in prefrontal resting-state EEG spectral power underlies individual differences in phasic and sustained cognitive control. Neuroimage 124, 843–857. https://doi.org/10.1016/j.neuroimage.2015.09.035.

    Article  PubMed  Google Scholar 

  5. Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94(1), 327–337.

    Article  Google Scholar 

  6. Asadzadeh, S., Rezaii, T. Y., Beheshti, S., Delpak, A., & Meshgini, S. (2020). A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities. Journal of Neuroscience Methods, 339, 108740.

    Article  Google Scholar 

  7. Baillet, S., Riera, J.J., Marin, G., Mangin, J.F., Aubert, J., Garnero, L. (2001). Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Physics in Medicine and Biology 46, 77–96. https://doi.org/10.1088/00319155/46/1/306.

  8. Baker, L. R., & McNulty, J. K. (2013). When low self-esteem encourages behaviors that risk rejection to increase interdependence: The role of relational self-construal. Journal of Personality and Social Psychology, 104, 995–1018.

    Article  Google Scholar 

  9. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497.

    Article  Google Scholar 

  10. Bellebaum, C., Kobza, S., Thiele, S., & Daum, I. (2010). It was not MY fault: event-related brain potentials in active and observational learning from feedback. Cerebral Cortex, 20(12), 2874–2883.

    Article  Google Scholar 

  11. Billeke, P., Zamorano, F., Cosmelli, D., Aboitiz, F., 2013. Oscillatory brain activity correlates with risk perception and predicts social decisions. Cerebral Cortex 23, 2872–2883. https://doi.org/10.1093/cercor/bhs269.

    Article  PubMed  Google Scholar 

  12. Böcker, K. B. E., Baas, J. M. P., Kenemans, J. L., & Verbaten, M. N. (2001). Stimulus-preceding negativity induced by fear: a manifestation of affective anticipation. International Journal of Psychophysiology, 43(1), 77–90.

    Article  Google Scholar 

  13. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.

    Article  Google Scholar 

  14. Cavanagh, J.F., Frank, M.J., Klein, T.J., Allen, J.J.B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage 49 (4), 3198–3209. https://doi.org/10.1016/j.neuroimage.2009.11.080.

  15. Cavanagh, J. F., Zambrano‐Vazquez, L., & Allen, J. J. (2012). Theta lingua franca: A common mid‐frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238. https://doi.org/10.1111/j.1469-8986.2011.01293.x.

  16. Cohen, M. X., Wilmes, K., & Vijver, I. V. (2011). Cortical electrophysiological network dynamics of feedback learning. Trends in Cognitive Sciences, 15(12), 558–566. https://doi.org/10.1016/j.tics.2011.10.004

    Article  PubMed  Google Scholar 

  17. Cooper, J. C., Dunne, S., Furey, T., & O’Doherty, J. P. (2013). The role of the posterior temporal and medial prefrontal cortices in mediating learning from romantic interest and rejection. Cerebral Cortex, 24(9), 2502–2511.

    Article  Google Scholar 

  18. Cristofori, I., Moretti, L., Harquel, S., Posada, A., Deiana, G., Isnard, J., ... & Sirigu, A. (2013). Theta signal as the neural signature of social exclusion. Cerebral Cortex, 23(10), 2437–2447.

  19. Dekkers, L.M.S., van der Molen, M.J.W., Moor, B.G., van der Veen, F.M., van der Molen, M.W. (2015). Cardiac and electro-cortical concomitants of social feedback processing in women. Soc. Cogn. Affect. Neurosci. 10, 1506–1514. https://doi.org/10.1093/scan/nsv039.

  20. Donkers, F. C., Nieuwenhuis, S., & Van Boxtel, G. J. (2005). Mediofrontal negativities in the absence of responding. Cognitive Brain Research, 25(3), 777–787.

    Article  Google Scholar 

  21. Eisenberger, N. I. (2015). Social pain and the brain: controversies, questions, and where to go from here. Annual Review of Psychology, 66, 601–629.

    Article  Google Scholar 

  22. Eisenberger, N.I., Lieberman, M.D., 2004. Why rejection hurts: a common neural alarm system for physical and social pain. Trends in Cognitive Sciences, 8, 294–300. https://doi.org/10.1016/j.tics.2004.05.010.

    Article  PubMed  Google Scholar 

  23. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290–292.

    Article  Google Scholar 

  24. Eisenberger, N. I., Gable, S. L., & Lieberman, M. D. (2007). Functional magnetic resonance imaging responses relate to differences in real-world social experience. Emotion, 7(4), 745.

    Article  Google Scholar 

  25. Ethridge, P., Kujawa, A., Dirks, M. A., Arfer, K. B., Kessel, E. M., Klein, D. N., & Weinberg, A. (2017). Neural responses to social and monetary reward in early adolescence and emerging adulthood. Psychophysiology, 54(12), 1786–1799. https://doi.org/10.1111/psyp.12957

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferdinand, N. K., Mecklinger, A., Kray, J., & Gehring, W. J. (2012). The processing of unexpected positive response outcomes in the mediofrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(35), 12087–12092. https://doi.org/10.1523/JNEUROSCI.1410-12.2012

    Article  Google Scholar 

  27. Fisher, H. E., Brown, L. L., Aron, A., Strong, G., & Mashek, D. (2010). Reward, addiction, and emotion regulation systems associated with rejection in love. Journal of Neurophysiology, 104(1), 51–60.

    Article  Google Scholar 

  28. Foti, D., & Hajcak, G. (2012). Genetic variation in dopamine moderates neural response during reward anticipation and delivery: Evidence from event-related potentials. Psychophysiology, 49(5), 617–626.

    Article  Google Scholar 

  29. Foti, D., Weinberg, A., Dien, J., & Hajcak, G. (2011). Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: response to commentary. Human Brain Mapping, 32(12), 2267–2269. https://doi.org/10.1002/hbm.21357

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., 2010. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online, 9, 45. https://doi.org/10.1186/1475-925X-9-45.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gunther Moor, B., Crone, E. A., & van der Molen, M. W. (2010). The heartbrake of social rejection: heart rate deceleration in response to unexpected peer rejection. Psychological Science, 21(9), 1326–1333.

    Article  Google Scholar 

  32. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679.

    Article  Google Scholar 

  33. Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688–697.

    Article  Google Scholar 

  34. Holroyd, C. B., HajiHosseini, A., & Baker, T. E. (2012). ERPs and EEG oscillations, best friends forever: comment on Cohen et al. Trends in Cognitive Sciences, 16(4), 192–193. https://doi.org/10.1016/j.tics.2012.02.008

    Article  PubMed  Google Scholar 

  35. Hu, L., Xiao, P., Zhang, Z. G., Mouraux, A., & Iannetti, G. D. (2014). Single-trial time–frequency analysis of electrocortical signals: Baseline correction and beyond. Neuroimage, 84, 876–887.

    Article  Google Scholar 

  36. Hughes, B. L., Leong, J. K., Shiv, B., & Zaki, J. (2018). Wanting to like: Motivation influences behavioral and neural responses to social feedback. bioRxiv, 300657. https://doi.org/10.1101/300657.

  37. Janssen, D. J., Poljac, E., & Bekkering, H. (2016). Binary sensitivity of theta activity for gain and loss when monitoring parametric prediction errors. Social Cognitive and Affective Neuroscience, 11(8), 1280–1289. https://doi.org/10.1093/scan/nsw033

    Article  PubMed  PubMed Central  Google Scholar 

  38. Joel, S., Plaks, J. E., & MacDonald, G. (2019). Nothing ventured, nothing gained: People anticipate more regret from missed romantic opportunities than from rejection. Journal of Social and Personal Relationships, 36(1), 305–336.

    Article  Google Scholar 

  39. Kappenman, E. S., & Luck, S. J. (2016). Best Practices for Event-Related Potential Research in Clinical Populations. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 1(2), 110–115. https://doi.org/10.1016/j.bpsc.2015.11.007

    Article  Google Scholar 

  40. Kross, E., Berman, M. G., Mischel, W., Smith, E. E., & Wager, T. D. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences, 108(15), 6270–6275.

    Article  Google Scholar 

  41. Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11(2), 417-441. https://doi.org/10.1162/089976699300016719.

  42. Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEGdata. Journal of Neuroscientific Methods 164, 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024.

    Article  Google Scholar 

  43. Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004). Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex, 14(7), 741–747. https://doi.org/10.1093/cercor/bhh034

    Article  PubMed  Google Scholar 

  44. Nunnally, J. C., Bernstein, I. H., & Berge, J. M. T. (1967). Psychometric theory. McGraw-Hill.

    Google Scholar 

  45. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011. https://doi.org/10.1155/2011/156869.

  46. Peterburs, J., Sannemann, L., & Bellebaum, C. (2019). Subjective preferences differentially modulate the processing of rewards gained by own vs. observed choices. Neuropsychologia, 132, 107139. https://doi.org/10.1016/j.neuropsychologia.2019.107139

    Article  Google Scholar 

  47. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiologie Clinique/Clinical Neurophysiology, 30(5), 263–288. https://doi.org/10.1016/s0987-7053(00)00227-6.

  48. Pornpattananangkul, N., & Nusslock, R. (2015). Motivated to win: Relationship between anticipatory and outcome reward-related neural activity. Brain and Cognition, 100, 21–40.

    Article  Google Scholar 

  49. Proudfit, G.H. (2015). The reward positivity: from basic research on reward to a biomarker for depression. Psychophysiology 52(4), 449–459. https://doi.org/10.1111/psyp.1237.

  50. Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. Psychophysiology, 56(6), e13335. https://doi.org/10.1111/psyp.13335

    Article  PubMed  Google Scholar 

  51. Seminowicz, D. A. , & Moayedi, M. . (2017). The dorsolateral prefrontal cortex in acute and chronic pain. Journal of Pain, 18(9):1027-1035.

    Article  Google Scholar 

  52. Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9(8), 1007.

    Article  Google Scholar 

  53. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., Jacobs, G. A. (1983). Manual for the state-trait anxiety inventory. Consulting Psychologist Press

    Google Scholar 

  54. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M. (2011). Brainstorm: a userfriendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience. 2011, 879716. https://doi.org/10.1155/2011/879716.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Threadgill, A. H., Ryan, J., Jordan, C., & Hajcak, G. (2020). The reward positivity: Comparing visual and auditory feedback. Biological Psychology, 154, 107907. https://doi.org/10.1016/j.biopsycho.2020.107907

    Article  PubMed  Google Scholar 

  56. Van der Molen, M. J.W., Poppelaars, E. S., Van Hartingsveldt, C. T., Harrewijn, A., Gunther Moor, B., & Westenberg, P. M. (2014). Fear of negative evaluation modulates electrocortical and behavioral responses when anticipating social evaluative feedback. Frontiers in Human Neuroscience, 7, 936. https://doi.org/10.1016/j.biopsycho.2018.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  57. Van der Molen, M. J. W., Dekkers, L. M., Westenberg, P. M., van der Veen, F. M., & Van der Molen, M. W. (2017). Why don’t you like me? Midfrontal theta power in response to unexpected peer rejection feedback. NeuroImage, 146, 474–483.

    Article  Google Scholar 

  58. van der Molen, M. J.W., Harrewijn, A., & Westenberg, P. M. (2018). Will they like me? Neural and behavioral responses to social-evaluative peer feedback in socially and non-socially anxious females. Biological Psychology, 135, 18–28. https://doi.org/10.1016/j.biopsycho.2018.02.016.

    Article  PubMed  Google Scholar 

  59. van der Veen, F. M., Burdzina, A., & Langeslag, S. J. E. (2019). Don’t you want me, baby? Cardiac and Electrocortical Concomitants of Romantic Interest and Rejection: Running Title: Romantic Interest and Rejection. Biological Psychology, 146, 107707. https://doi.org/10.1016/j.biopsycho.2019.05.007.

    Article  PubMed  Google Scholar 

  60. Warren, C. M., & Holroyd, C. B. (2012). The Impact of Deliberative Strategy Dissociates ERP Components Related to Conflict Processing vs. Reinforcement Learning. Frontiers in Neuroscience, 6, 43. https://doi.org/10.3389/fnins.2012.00043

    Article  PubMed  PubMed Central  Google Scholar 

  61. Watson, D., Clark, L.A., Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063.

    Article  Google Scholar 

  62. Yao, M., Lei, Y., Li, P., Ye, Q., Liu, Y., Li, X., & Peng, W. (2019). Shared sensitivity to physical pain and social evaluation. The Journal of Pain, 21(5-6), 677-688.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31671150), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS0003), and Shenzhen Basic Research Scheme (JCYJ20150729104249783).

Data and Code Availability Statement

The data and code that support the findings of this study are available from the corresponding author [Hong Li, E-mail: lihongwrm@vip.sina.com] upon reasonable request.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zongling He or Hong Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"The original online version of this article was revised:" plus the same explanatory text of the problem as in the erratum/correction article.

Supplementary Information

ESM 1

(DOCX 1.24 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., van der Molen, M.J.W., Otieno, S.C.S.A. et al. Neural correlates of acceptance and rejection in online speed dating: An electroencephalography study. Cogn Affect Behav Neurosci (2021). https://doi.org/10.3758/s13415-021-00939-0

Download citation

Keywords

  • Dating
  • Stimulus preceding negativity
  • Reward positivity
  • Theta oscillation
  • Source localization