Structural Brain Development and Aggression: A Longitudinal Study in Late Childhood

Abstract

This longitudinal study examined the neurodevelopmental correlates of aggression in children, focusing on structural brain properties. A community sample of 110 (60 females) children participated at age 8 years and again at age 10 years. Brain structure was assessed by using magnetic resonance imaging (MRI), and parents reported on child aggression using the Child Behavior Checklist. Analyses examined the relationship between aggression and development of volume of subcortical regions, cortical thickness, and subcortical-cortical structural coupling. Females with relatively high aggression exhibited reduced right hippocampal growth over time. Across males and females, aggression was associated with amygdala- and hippocampal-cortical developmental coupling, with findings for amygdala-cortical coupling potentially indicating reduced top-down prefrontal control of the amygdala in those with increasing aggression over time. Findings suggest that aggressive behaviors may be associated with alterations in normative brain development; however, results were not corrected for multiple comparisons and should be interpreted with caution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Achenbach, T., & Ruffle, T. (2000). The Child Behavior Checklist and Related Forms for Assessing Behavioral/Emotional Problems and Competencies. Pediatrics in Review, 21(8),265-271. https://doi.org/10.1542/pir.21-8-265

    Article  PubMed  Google Scholar 

  2. Achenbach, T. M., & Rescorla, L.A. (2001). Manual for the ASEBA School-Age Forms & Profiles. Burlington: University of Vermont, Research Center for Children, Youth, & Families.

    Google Scholar 

  3. Ameis, S., Ducharme, S., Albaugh, M., Hudziak, J., Botteron, K., & Lepage, C. et al. (2014). Cortical Thickness, Cortico-Amygdalar Networks, and Externalizing Behaviors in Healthy Children. Biological Psychiatry, 75(1), 65-72. https://doi.org/10.1016/j.biopsych.2013.06.008

  4. Bellina, M., Brambilla, P., Garzitto, M., Negri, G., Molteni, M., & Nobile, M. (2012). The ability of CBCL DSM-oriented scales to predict DSM-IV diagnoses in a referred sample of children and adolescents. European Child & Adolescent Psychiatry, 22(4), 235-246. https://doi.org/10.1007/s00787-012-0343-0

    Article  Google Scholar 

  5. Bos, M., Wierenga, L., Blankenstein, N., Schreuders, E., Tamnes, C., & Crone, E. (2018). Longitudinal Structural Brain Development and Externalizing Behavior in Adolescence. Journal Of Child Psychology And Psychiatry, 59(10), 1061-1072. https://doi.org/10.1111/jcpp.12972

    Article  PubMed  Google Scholar 

  6. Cardinal, R., Parkinson, J., Hall, J., & Everitt, B. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26(3), 321-352. https://doi.org/10.1016/s0149-7634(02)00007-6

    Article  Google Scholar 

  7. Davidson, R., Putnam, K., & Larson, C. (2000). Dysfunction in the Neural Circuitry of Emotion Regulation--A Possible Prelude to Violence. Science, 289(5479), 591-594. https://doi.org/10.1126/science.289.5479.591

    Article  PubMed  Google Scholar 

  8. Dennis, E., Humphreys, K., King, L., Thompson, P., & Gotlib, I. (2019). Irritability and Brain Volume in Adolescents: Cross-Sectional and Longitudinal Associations. Social Cognitive And Affective Neuroscience. https://doi.org/10.1093/scan/nsz053.

  9. Ducharme, S., Hudziak, J., Botteron, K., Ganjavi, H., Lepage, C., & Collins, D. et al. (2011). Right Anterior Cingulate Cortical Thickness and Bilateral Striatal Volume Correlate with Child Behavior Checklist Aggressive Behavior Scores in Healthy Children. Biological Psychiatry, 70(3), 283-290. https://doi.org/10.1016/j.biopsych.2011.03.015

  10. Fairchild, G., Passamonti, L., Hurford, G., Hagan, C., von dem Hagen, E., & van Goozen, S. et al. (2011). Brain Structure Abnormalities in Early-Onset and Adolescent-Onset Conduct Disorder. American Journal Of Psychiatry, 168(6), 624-633. https://doi.org/10.1176/appi.ajp.2010.10081184

  11. Fite, P. (2018). Developmental trajectories of relational aggression. In: S. Coyne and J. Ostrov, ed., The Development of Relational Aggression., 1st ed. New York: Oxford University Press, pp.49-60.

  12. Godsil, B., Kiss, J., Spedding, M., & Jay, T. (2013). The hippocampal–prefrontal pathway: The weak link in psychiatric disorders?. European Neuropsychopharmacology, 23(10), 1165-1181. https://doi.org/10.1016/j.euroneuro.2012.10.018

    Article  PubMed  Google Scholar 

  13. Gomez, R., Vance, A., & Gomez, R.M. (2014). Analysis of the Convergent and Discriminant Validity of the CBCL, TRF, and YSR in a Clinic-Referred Sample. Journal Of Abnormal Child Psychology, 42(8), 1413-1425. https://doi.org/10.1007/s10802-014-9879-4

    Article  PubMed  Google Scholar 

  14. Gregg, T., & Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Progress In Neuro-Psychopharmacology And Biological Psychiatry, 25(1), 91-140. https://doi.org/10.1016/s0278-5846(00)00150-0

    Article  PubMed  Google Scholar 

  15. Guillot, P., Roubertoux, P., & Crusio, W. (1994). Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Research, 660(1), 167-169. https://doi.org/10.1016/0006-8993(94)90852-4

    Article  PubMed  Google Scholar 

  16. Herting, M., Johnson, C., Mills, K., Vijayakumar, N., Dennison, M., & Liu, C. et al. (2018). Development of subcortical volumes across adolescence in males and females: a multisample study of longitudinal changes. Neuroimage, 172, 194-205. https://doi.org/10.1016/j.neuroimage.2018.01.020

  17. Huebner, T., Vloet, T., Marx, I., Konrad, K., Fink, G., Herpertz, S., & Herpertz-Dahlmann, B. (2008). Morphometric Brain Abnormalities in Boys With Conduct Disorder. Journal Of The American Academy Of Child & Adolescent Psychiatry, 47(5), 540-547. https://doi.org/10.1097/chi.0b013e3181676545

    Article  Google Scholar 

  18. Huesmann, L., Eron, L., Lefkowitz, M., & Walder, L. (1984). Stability of aggression over time and generations. Developmental Psychology, 20(6), 1120-1134. https://doi.org/10.1037/0012-1649.20.6.1120

    Article  Google Scholar 

  19. Ito, R., & Lee, A. (2016). The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behavioural Brain Research, 313, 345-357. https://doi.org/10.1016/j.bbr.2016.07.039

    Article  PubMed  Google Scholar 

  20. LeDoux, J., & Pine, D. (2016). Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework. American Journal Of Psychiatry, 173(11), 1083-1093. https://doi.org/10.1176/appi.ajp.2016.16030353

    Article  Google Scholar 

  21. Lombardo, K., Herringa, R., Balachandran, J., Hsu, D., Bakshi, V., Roseboom, P., & Kalin, N. (2001). Effects of acute and repeated restraint stress on corticotropin-releasing hormone binding protein mRNA in rat amygdala and dorsal hippocampus. Neuroscience Letters, 302(2-3), 81-84. https://doi.org/10.1016/s0304-3940(01)01680-9

    Article  PubMed  Google Scholar 

  22. Moffitt, T. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100(4), 674-701. https://doi.org/10.1037//0033-295x.100.4.674

    Article  PubMed  Google Scholar 

  23. Muetzel, R., Blanken, L., van der Ende, J., El Marroun, H., Shaw, P., & Sudre, G. et al. (2018). Tracking Brain Development and Dimensional Psychiatric Symptoms in Children: A Longitudinal Population-Based Neuroimaging Study. American Journal Of Psychiatry, 175(1), 54-62. https://doi.org/10.1176/appi.ajp.2017.16070813

  24. Nakamura, B., Ebesutani, C., Bernstein, A., & Chorpita, B. (2008). A Psychometric Analysis of the Child Behavior Checklist DSM-Oriented Scales. Journal Of Psychopathology And Behavioral Assessment, 31(3), 178-189. https://doi.org/10.1007/s10862-008-9119-8

    Article  Google Scholar 

  25. Nunes, P., Wenzel, A., Borges, K., Porto, C., Caminha, R., & de Oliveira, I. (2009). Volumes of the Hippocampus and Amygdala in Patients With Borderline Personality Disorder: A Meta-Analysis. Journal Of Personality Disorders, 23(4), 333-345. https://doi.org/10.1521/pedi.2009.23.4.333

    Article  PubMed  Google Scholar 

  26. Ostrov, J., & Hart, E. (2012). Observational methods. In T. D. Little (Ed.), Oxford handbook of quantitative methods (Vol. 1, pp. 286–304). New York: Oxford University Press.

    Google Scholar 

  27. Pardini, D., Raine, A., Erickson, K., & Loeber, R. (2014). Lower Amygdala Volume in Men is Associated with Childhood Aggression, Early Psychopathic Traits, and Future Violence. Biological Psychiatry, 75(1), 73-80. https://doi.org/10.1016/j.biopsych.2013.04.003

    Article  PubMed  Google Scholar 

  28. Perry, K., & Ostrov, J. (2018). The Reciprocal Relations Between Female and Male Play Partners and Aggression in Early Childhood. Child Development, 90(1), 127-135. https://doi.org/10.1111/cdev.13178

    Article  PubMed  Google Scholar 

  29. Potegal, M. (2012). Temporal and frontal lobe initiation and regulation of the top-down escalation of anger and aggression. Behavioural Brain Research, 231(2), 386-395. https://doi.org/10.1016/j.bbr.2011.10.049

    Article  PubMed  Google Scholar 

  30. Pozzi, E., Bousman, C., Simmons, J., Vijayakumar, N., Schwartz, O., & Seal, M. et al. (2019). Interaction between hypothalamic-pituitary-adrenal axis genetic variation and maternal behavior in the prediction of amygdala connectivity in children. Neuroimage, 197, 493-501. https://doi.org/10.1016/j.neuroimage.2019.05.013

  31. Prior, H., Schwegler, H., Marashi, V., & Sachser, N. (2004). Exploration, emotionality, and hippocampal mossy fibers in nonaggressive AB/Gat and congenic highly aggressive mice. Hippocampus, 14(1), 135-140. https://doi.org/10.1002/hipo.10166

    Article  PubMed  Google Scholar 

  32. Raine, A., Ishikawa, S., Arce, E., Lencz, T., Knuth, K., & Bihrle, S. et al. (2004). Hippocampal structural asymmetry in unsuccessful psychopaths. Biological Psychiatry, 55(2), 185–191. https://doi.org/10.1016/s0006-3223(03)00727-3

  33. Raschle, N., Menks, W., Fehlbaum, L., Tshomba, E., & Stadler, C. (2015). Structural and Functional Alterations in Right Dorsomedial Prefrontal and Left Insular Cortex Co-Localize in Adolescents with Aggressive Behaviour: An ALE Meta-Analysis. PLOS ONE, 10(9), e0136553. https://doi.org/10.1371/journal.pone.0136553

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rubin, R., Watson, P., Duff, M., & Cohen, N. (2014). The role of the hippocampus in flexible cognition and social behavior. Frontiers In Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00742

  35. Sarkar, S., Craig, M., Catani, M., Dell'Acqua, F., Fahy, T., Deeley, Q., & Murphy, D. (2012). Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychological Medicine, 43(02), 401-411. https://doi.org/10.1017/s003329171200116x

    Article  PubMed  Google Scholar 

  36. Schoenbaum, G., Setlow, B., Saddoris, M., & Gallagher, M. (2003). Encoding Predicted Outcome and Acquired Value in Orbitofrontal Cortex during Cue Sampling Depends upon Input from Basolateral Amygdala. Neuron, 39(5), 855-867. https://doi.org/10.1016/s0896-6273(03)00474-4

    Article  PubMed  Google Scholar 

  37. Schwartz, D., McFadyen-Ketchum, S.A., Dodge, K.A., Pettit, G.S., & Bates, J.E. (1999). Early behavior problems as a predictor of later peer group victimization: Moderators and mediators in the pathways of social risk. Journal of Abnormal Child Psychology, 27, 191–201.

    Article  Google Scholar 

  38. Siever, L. (2008). Neurobiology of Aggression and Violence. American Journal Of Psychiatry, 165(4), 429-442. https://doi.org/10.1176/appi.ajp.2008.07111774

    Article  Google Scholar 

  39. Simmons, J., Schwartz, O., Bray, K., Deane, C., Pozzi, E., & Richmond, S. et al. (2017). Study protocol: families and childhood transitions study (FACTS) – a longitudinal investigation of the role of the family environment in brain development and risk for mental health disorders in community based children. BMC Pediatrics, 17(1). https://doi.org/10.1186/s12887-017-0905-x

  40. Sluyter, F., van Oortmerssen, G., de Ruiter, A., & Koolhaas, J. (1996). Aggression in wild house mice: Current state of affairs. Behavior Genetics, 26(5), 489-496. https://doi.org/10.1007/bf02359753

    Article  PubMed  Google Scholar 

  41. Tamnes, C.K., Herting, M.M., Goddings, A.L., Meuwese, R., Blakemore, S.J., Dahl, R.E., Güroğlu, B., Raznahan, A., Sowell, E.R., Crone, E.A. and Mills, K.L., 2017. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. Journal of Neuroscience, 37(12), pp.3402-3412.

  42. Thijssen, S., Ringoot, A., Wildeboer, A., Bakermans-Kranenburg, M., El Marroun, H., & Hofman, A. et al. (2015). Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children. Cognitive, Affective, & Behavioral Neuroscience, 15(3), 564-577. https://doi.org/10.3758/s13415-015-0344-9

  43. Vijayakumar, N., Allen, N., Dennison, M., Byrne, M., Simmons, J., & Whittle, S. (2017). Cortico-amygdalar maturational coupling is associated with depressive symptom trajectories during adolescence. Neuroimage, 156, 403–411.

  44. Visser, T., Ohan, J., Whittle, S., Yücel, M., Simmons, J., & Allen, N. (2013). Sex differences in structural brain asymmetry predict overt aggression in early adolescents. Social Cognitive And Affective Neuroscience, 9(4), 553-560. https://doi.org/10.1093/scan/nst013

  45. Walhovd, K., Tamnes, C., Østby, Y., Due-Tønnessen, P., & Fjell, A. (2012). Normal variation in behavioral adjustment relates to regional differences in cortical thickness in children. European Child & Adolescent Psychiatry, 21(3), 133-140. https://doi.org/10.1007/s00787-012-0241-5

    Article  Google Scholar 

  46. Walton, K., Ormel, J., & Krueger, R. (2011). The Dimensional Nature of Externalizing Behaviors in Adolescence: Evidence from a Direct Comparison of Categorical, Dimensional, and Hybrid Models. Journal Of Abnormal Child Psychology, 39(4), 553-561. https://doi.org/10.1007/s10802-010-9478-y

    Article  PubMed  Google Scholar 

  47. Whittle, S., Vijayakumar, N., Simmons, J., & Allen, N. (2019). Internalizing and Externalizing Symptoms Are Associated With Different Trajectories of Cortical Development During Late Childhood. Journal Of The American Academy Of Child & Adolescent Psychiatry. https://doi.org/10.1016/j.jaac.2019.04.006

  48. Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage, 96, 67-72. https://doi.org/10.1016/j.neuroimage.2014.03.072

    Article  PubMed  Google Scholar 

  49. Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81-88. https://doi.org/10.1016/j.pscychresns.2009.03.012

    Article  PubMed  Google Scholar 

  50. Zetzsche, T., Preuss, U., Frodl, T., Schmitt, G., Seifert, D., & Münchhausen, E. et al. (2007). Hippocampal volume reduction and history of aggressive behaviour in patients with borderline personality disorder. Psychiatry Research: Neuroimaging, 154(2), 157-170. https://doi.org/10.1016/j.pscychresns.2006.05.010

  51. Zhang, P., Roberts, R., Liu, Z., Meng, X., Tang, J., Sun, L., & Yu, Y. (2012). Hostility, Physical Aggression and Trait Anger as Predictors for Suicidal Behavior in Chinese Adolescents: A School-Based Study. Plos ONE, 7(2), e31044. https://doi.org/10.1371/journal.pone.0031044

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hannah Roberts.

Additional information

None of the data or materials for the experiments reported here are available. None of the experiments were preregistered.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 672 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, H., Pozzi, E., Vijayakumar, N. et al. Structural Brain Development and Aggression: A Longitudinal Study in Late Childhood. Cogn Affect Behav Neurosci (2021). https://doi.org/10.3758/s13415-021-00871-3

Download citation

Keywords

  • Childhood aggression
  • Hippocampus
  • Structural covariance
  • Structural magnetic resonance imaging
  • Sex difference