Monitor yourself! Deficient error-related brain activity predicts real-life self-control failures

  • Klaus-Martin Krönke
  • Max Wolff
  • Holger Mohr
  • Anja Kräplin
  • Michael N. Smolka
  • Gerhard Bühringer
  • Thomas Goschke


Despite their immense relevance, the neurocognitive mechanisms underlying real-life self-control failures (SCFs) are insufficiently understood. Whereas previous studies have shown that SCFs were associated with decreased activity in the right inferior frontal gyrus (rIFG; a region involved in cognitive control), here we consider the possibility that the reduced implementation of cognitive control in individuals with low self-control may be due to impaired performance monitoring. Following a brain-as-predictor approach, we combined experience sampling of daily SCFs with functional magnetic resonance imaging (fMRI) in a Stroop task. In our sample of 118 participants, proneness to SCF was reliably predicted by low error-related activation of a performance-monitoring network (comprising anterior mid-cingulate cortex, presupplementary motor area, and anterior insula), low posterror rIFG activation, and reduced posterror slowing. Remarkably, these neural and behavioral measures predicted variability in SCFs beyond what was predicted by self-reported trait self-control. These results suggest that real-life SCFs may result from deficient performance monitoring, leading to reduced recruitment of cognitive control after responses that conflict with superordinate goals.


Cognitive control Experience sampling Individual differences Performance monitoring Self-control 


  1. Aarts, K., De Houwer, J., & Pourtois, G. (2012). Evidence for the automatic evaluation of self-generated actions. Cognition, 124, 117–127. CrossRefPubMedGoogle Scholar
  2. Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action–outcome predictor. Nature Neuroscience, 14, 1338–1344. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177–185. CrossRefPubMedGoogle Scholar
  4. Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-control. Current Directions in Psychological Science, 16, 351–355. CrossRefGoogle Scholar
  5. Berkman, E. T., & Falk, E. B. (2013). Beyond brain mapping: Using neural measures to predict real-world outcomes. Current Directions in Psychological Science, 22, 45–50. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berkman, E. T., Falk, E. B., & Lieberman, M. D. (2011). In the trenches of real-world self-control: Neural correlates of breaking the link between craving and smoking. Psychological Science, 22, 498–506. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berkman, E. T., Kahn, L. E., & Merchant, J. S. (2014). Training-induced changes in inhibitory control network activity. Journal of Neuroscience, 34, 149–157. CrossRefPubMedGoogle Scholar
  8. Bertrams, A., & Dickhäuser, O. (2009). Messung dispositioneller Selbstkontroll-Kapazität: Eine deutsche Adaptation der Kurzform der Self-Control Scale (SCS-K-D) [Measuring dispositional self-control capacity. A German adaptation of the short form of the Self-Control Scale (SCS-K-D)]. Diagnostica, 55, 2–10. CrossRefGoogle Scholar
  9. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. CrossRefPubMedGoogle Scholar
  10. Bühringer, G., Kräplin, A., & Behrendt, S. (2012). Universal characteristics and consequences of the addiction syndrome. In H. J. Shaffer, D. A. LaPlante, & S. E. Nelson (Eds.), APA addiction syndrome handbook, Vol. 1: Foundations, influences, and expressions of addiction (Vol. 1, pp. 291–316). Washington, DC; American Psychological Association.CrossRefGoogle Scholar
  11. Bühringer, G., Wittchen, H.-U., Gottlebe, K., Kufeld, C., & Goschke, T. (2008). Why people change? The role of cognitive-control processes in the onset and cessation of substance abuse disorders. International Journal of Methods in Psychiatric Research, 17, S4–S15. CrossRefPubMedGoogle Scholar
  12. Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: An interference task specialized for functional neuroimaging—Validation study with functional MRI. Human Brain Mapping, 6, 270–282.<270::AID-HBM6>3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  13. Carey, S. E., Nestor, L., Jones, J., Garavan, H., & Hester, R. (2015). Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity. Drug and Alcohol Dependence, 155, 175–182. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Craig, A.D.B (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70. CrossRefPubMedGoogle Scholar
  15. Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78, 94–98. CrossRefPubMedGoogle Scholar
  17. Duckworth, A. L., & Kern, M. L. (2011). A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality, 45, 259–268. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dutilh, G., van Ravenzwaaij, D., Nieuwenhuis, S., van der Maas, Han L. J., Forstmann, B. U., & Wagenmakers, E.-J. (2012). How to measure post-error slowing: A confound and a simple solution. Journal of Mathematical Psychology, 56, 208–216. CrossRefGoogle Scholar
  19. Ebitz, R. B., & Hayden, B. Y. (2016). Dorsal anterior cingulate: A Rorschach test for cognitive neuroscience. Nature neuroscience, 19, 1278–1279. CrossRefPubMedGoogle Scholar
  20. Fischer, R., Plessow, F., Dreisbach, G., & Goschke, T. (2015). Individual differences in the context-dependent recruitment of cognitive control: Evidence from action versus state orientation. Journal of Personality, 83, 575–583. CrossRefPubMedGoogle Scholar
  21. Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: Advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23(Suppl. 1), 41–57. CrossRefPubMedGoogle Scholar
  22. Goschke, T., & Bolte, A. (2018). A dynamic perspective on intention, conflict, and volition: Adaptive regulation and emotional modulation of cognitive control dilemmas. In N. Baumann, M. Kazén, M. Quirin, & S. L. Koole (Eds.), Why people do the things they do: Building on Julius Kuhl’s contribution to motivation and volition psychology (pp. 111–130). Göttingen, Germany: Hogrefe.Google Scholar
  23. Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57, 303–311. CrossRefPubMedGoogle Scholar
  24. Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15, 132–139. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hofmann, W., Baumeister, R. F., Förster, G., & Vohs, K. D. (2012). Everyday temptations: An experience sampling study of desire, conflict, and self-control. Journal of Personality and Social Psychology, 102, 1318–1335. CrossRefPubMedGoogle Scholar
  26. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174–180. CrossRefPubMedGoogle Scholar
  27. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. CrossRefPubMedGoogle Scholar
  28. Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16, 122–128. CrossRefPubMedGoogle Scholar
  29. Hox, J. J. (2010). Multilevel analysis: Techniques and applications (Quantitative Methodology series), 2nd ed. New York, NY: Routledge.Google Scholar
  30. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19, 126–132. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Inzlicht, M., Legault, L., & Teper, R. (2014). Exploring the mechanisms of self-control improvement. Current Directions in Psychological Science, 23, 302–307. CrossRefGoogle Scholar
  32. Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective, & Behavioral Neuroscience, 7, 109–119. CrossRefGoogle Scholar
  33. Jostmann, N. B., & Koole, S. L. (2007). On the regulation of cognitive control: Action orientation moderates the impact of high demands in Stroop interference tasks. Journal of Experimental Psychology. General, 136, 593–609. CrossRefPubMedGoogle Scholar
  34. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25, 2027–2037. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026. CrossRefPubMedGoogle Scholar
  36. King, J. A., Korb, F. M., von Cramon, D. Y., & Ullsperger, M. (2010). Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. Journal of Neuroscience, 30, 12759–12769. CrossRefPubMedGoogle Scholar
  37. Klein, T. A., Endrass, T., Kathmann, N., Neumann, J., von Cramon, D. Y., & Ullsperger, M. (2007). Neural correlates of error awareness. NeuroImage, 34, 1774–1781. CrossRefPubMedGoogle Scholar
  38. Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. CrossRefPubMedGoogle Scholar
  39. Kool, W., McGuire, J. T., Wang, G. J., & Botvinick, M. M. (2013). Neural and behavioral evidence for an intrinsic cost of self-control. PLoS ONE, 8, e72626. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kotabe, H. P., & Hofmann, W. (2015). On integrating the components of self-control. Perspectives on Psychological Science, 10, 618–638. CrossRefPubMedGoogle Scholar
  41. Kuhl, J., & Beckmann, J. (1994). Volition and personality: Action versus state orientation. Göttingen, Germany: Hogrefe & HuberGoogle Scholar
  42. Lopez, R. B., Hofmann, W., Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2014). Neural predictors of giving in to temptation in daily life. Psychological Science, 25, 1337–1344. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Luijten, M., Machielsen, M. W., Veltman, D. J., Hester, R., de Haan, L., & Franken, I. H. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry & Neuroscience.
  44. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. CrossRefPubMedGoogle Scholar
  45. Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J.,… Shoda, Y. (2010). “Willpower” over the life span: Decomposing self-regulation. Social Cognitive and Affective Neuroscience, 6, 252–256.
  46. Mrazek, M. D., Franklin, M. S., Phillips, D. T., Baird, B., & Schooler, J. W. (2013). Mindfulness training improves working memory capacity and GRE performance while reducing mind wandering. Psychological Science, 24, 776–781. CrossRefPubMedGoogle Scholar
  47. Neta, M., Schlaggar, B. L., & Petersen, S. E. (2014). Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions. NeuroImage, 99, 59–68. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71, 264–272. doi: CrossRefPubMedGoogle Scholar
  49. Raudenbush, S. B., Cheong, A., Congdon, Y., & DuToit, R. M. (2011). HLM7: Hierarchical linear and nonlinear modeling. Lincolnwood, IL: Scientific Software International.Google Scholar
  50. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447. CrossRefPubMedGoogle Scholar
  51. Saunders, B., Lin, H., Milyavskaya, M., & Inzlicht, M. (2017). The emotive nature of conflict monitoring in the medial prefrontal cortex. International Journal of Psychophysiology, 119, 31–40. CrossRefPubMedGoogle Scholar
  52. Saunders, B., Rodrigo, A. H., & Inzlicht, M. (2016). Mindful awareness of feelings increases neural performance monitoring. Cognitive, Affective, & Behavioral Neuroscience, 16, 93–105. CrossRefGoogle Scholar
  53. Schroeder, S. A. (2007). We can do better—Improving the health of the American people. New England Journal of Medicine, 357, 1221–1228. CrossRefPubMedGoogle Scholar
  54. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105, 12569–12574. CrossRefGoogle Scholar
  56. Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271–324. CrossRefPubMedGoogle Scholar
  57. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,… Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.
  58. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 55–61. CrossRefPubMedGoogle Scholar
  59. Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94, 35–79. CrossRefPubMedGoogle Scholar
  60. Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214, 629–643. CrossRefPubMedGoogle Scholar
  61. Ullsperger, M., & von Cramon, D. Y. (2004). Neuroimaging of performance monitoring: Error detection and beyond. Cortex, 40, 593–604. CrossRefPubMedGoogle Scholar
  62. Wiswede, D., Münte, T. F., Goschke, T., & Rüsseler, J. (2009). Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia, 47, 83–90. CrossRefPubMedGoogle Scholar
  63. Witkiewitz, K., Bowen, S., Douglas, H., & Hsu, S. H. (2013). Mindfulness-based relapse prevention for substance craving. Addictive Behaviors, 38, 1563–1571. CrossRefPubMedGoogle Scholar
  64. Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B.,… Steinhausen, H.-C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21, 655–679.
  65. Wolff, M., Krönke, K.-M., Venz, J., Kräplin, A., Bühringer, G., Smolka, M. N., & Goschke, T. (2016). Action versus state orientation moderates the impact of executive functioning on real-life self-control. Journal of Experimental Psychology: General, 145, 1635–1653. CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Klaus-Martin Krönke
    • 1
  • Max Wolff
    • 1
    • 2
  • Holger Mohr
    • 1
  • Anja Kräplin
    • 1
  • Michael N. Smolka
    • 2
    • 3
  • Gerhard Bühringer
    • 1
  • Thomas Goschke
    • 1
    • 3
  1. 1.Department of PsychologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of PsychiatryTechnische Universität DresdenDresdenGermany
  3. 3.Neuroimaging CenterTechnische Universität DresdenDresdenGermany

Personalised recommendations