The influence of emotional stimuli on the oculomotor system: A review of the literature

  • Manon Mulckhuyse


In the past decade, more and more research has been investigating oculomotor behavior in relation to attentional selection of emotional stimuli. Whereas previous research on covert emotional attention demonstrates contradictory results, research on overt attention clearly shows the influence of emotional stimuli on attentional selection. The current review highlights studies that have used eye-movement behavior as the primary outcome measure in healthy populations and focusses on the evidence that emotional stimuli—in particular, threatening stimuli—affect temporal and spatial dynamics of oculomotor programming. The most prominent results from these studies indicate that attentional selection of threatening stimuli is under bottom-up control. Moreover, threatening stimuli seem to have the greatest impact on oculomotor behavior through biased processing via the magnocellular pathway. This is consistent with an evolutionary account of threat processing, which claims a pivotal role for a subcortical network including pulvinar, superior colliculus, and amygdala. Additionally, I suggest a neurobiological model that considers possible mechanisms by which emotional stimuli could affect oculomotor behavior. The present review confirms the relevance of eye-movement measurements in relation to researching emotion in order to elucidate processes involved in emotional modulation of visual and attentional selection.


Emotion Attention Amygdala Eye movements Threat 



M.M. was supported by a VENI grant from NWO (Netherlands Organization for Scientific Research).


  1. Alpers, G. W. (2008). Eye-catching: Right hemisphere attentional bias for emotional pictures. Laterality, 13(2), 158–178. PubMedGoogle Scholar
  2. Armony, J. L., & Dolan, R. J. (2002). Modulation of spatial attention by fear-conditioned stimuli: An event-related fMRI study. Neuropsychologia, 40(7), 817–826. PubMedGoogle Scholar
  3. Armstrong, T., & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32(8), 704–723. PubMedPubMedCentralGoogle Scholar
  4. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443.PubMedPubMedCentralGoogle Scholar
  5. Bannerman, R. L., Milders, M., de Gelder, B., & Sahraie, A. (2009). Orienting to threat: Faster localization of fearful facial expressions and body postures revealed by saccadic eye movements. Proceedings of the Royal Society B: Biological Sciences, 276(1662), 1635–1641. PubMedPubMedCentralGoogle Scholar
  6. Bannerman, R. L., Milders, M., & Sahraie, A. (2009). Processing emotional stimuli: Comparison of saccadic and manual choice-reaction times. Cognition & Emotion, 23(5), 930–954. Google Scholar
  7. Bannerman, R. L., Milders, M., & Sahraie, A. (2010a). Attentional bias to brief threat-related faces revealed by saccadic eye movements. Emotion, 10(5), 733–738. PubMedGoogle Scholar
  8. Bannerman, R. L., Milders, M., & Sahraie, A. (2010b). Attentional cueing: Fearful body postures capture attention with saccades. Journal of Vision, 10(5), 23. PubMedGoogle Scholar
  9. Bar, M. (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci. 15, 600–609PubMedGoogle Scholar
  10. Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–89.PubMedGoogle Scholar
  11. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1–24. PubMedGoogle Scholar
  12. Belopolsky, A. V. (2015). Common priority map for selection history, reward and emotion in the oculomotor system. Perception, 1–14.
  13. Belopolsky, A. V., Devue, C., & Theeuwes, J. (2011). Angry faces hold the eyes. Visual Cognition, 19(1), 27–36. Google Scholar
  14. Berger, A., Henik, A., & Rafal, R. (2005). Competition between endogenous and exogenous orienting of visual attention. Journal of Experimental Psychology: General, 134, 207–221. Google Scholar
  15. Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. In S. E. Hyman (Ed.), Annual review of neuroscience (Vol. 33, pp. 1–21). Palo Alto, CA: Annual Reviews.Google Scholar
  16. Blair, R. J. R., Morris, J. S., Frith, C. D., Perrett, D. I. & Dolan, R. (1999) Dissociable neural responses to facial expressions of sadness and anger. Brain 122:883–93.PubMedGoogle Scholar
  17. Bourgeois A., Chelazzi L., & Vuilleumier P. (2016). How motivation and reward learning modulate selective attention. Progress in Brain Research 229, 325–42.PubMedGoogle Scholar
  18. Brosch, T., Pourtois, G., & Sander, D. (2010). The perception and categorisation of emotional stimuli: A review. Cognition & Emotion, 24(3), 377–400. Google Scholar
  19. Brosch, T., Pourtois, G., Sander, D., & Vuilleumier, P. (2011). Additive effects of emotional, endogenous, and exogenous attention: Behavioral and electrophysiological evidence. Neuropsychologia, 49(7), 1779–1787. PubMedGoogle Scholar
  20. Calvo, M. G., & Nummenmaa, L. (2011). Time course of discrimination between emotional facial expressions: The role of visual saliency. Vision Research, 51(15), 1751–1759. PubMedGoogle Scholar
  21. Carretié, L. (2014). Exogenous (automatic) attention to emotional stimuli: A review. Cognitive, Affective, & Behavioral Neuroscience, 14, 1228–1258.Google Scholar
  22. Chelazzi, L., & Corbetta, M. (2000). Cortical mechanisms of visuospatial attention in the human brain. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 667–686). Cambridge, MA: MIT Press.Google Scholar
  23. Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., . . . Shulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.
  24. Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13–34. PubMedGoogle Scholar
  25. Day-Brown, J. D., Wei, H. Y., Chomsung, R. D., Petry, H. M., & Bickford, M. E. (2010). Pulvinar projections to the striatum and amygdala in the tree shrew. Frontiers in Neuroanatomy, 4.
  26. de Gelder, B., van Honk, J., & Tamietto, M. (2011). Emotion in the brain: Of low roads, high roads and roads less travelled. Nature Reviews Neuroscience, 12(7), 425. PubMedGoogle Scholar
  27. Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17, 222–227. PubMedGoogle Scholar
  28. Devue, C., & Grimshaw, G. M. (2017). Faces are special, but facial expressions aren’t: Insights from an oculomotor capture paradigm. Attention, Perception, & Psychophysics, 79(5), 1438–1452. Google Scholar
  29. Ekman P., & Friesen, W., V. (1975). Unmasking the Face: A Guide to Recognizing the Emotions from Facial Clues, Prentice Hall. Englewood Cliffs, New Jersey.Google Scholar
  30. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382–390. PubMedGoogle Scholar
  31. Findlay, J. M. (1982). Global processing for saccadic eye movements. Vision Research, 22, 1033–1045. PubMedGoogle Scholar
  32. Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology: General, 130, 681–700.Google Scholar
  33. Fox, E., Russo, R., & Dutton, K. (2002). Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cognition & Emotion, 16, 355–379.Google Scholar
  34. Frischen, A., Eastwood, J. D., & Smilek, D. (2008). Visual search for faces with emotional expressions. Psychological Bulletin, 134(5), 662–676. PubMedGoogle Scholar
  35. Godijn, R., & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1039–1054. PubMedGoogle Scholar
  36. Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., & Weinberger, D. R. (2002). The amygdala response to emotional stimuli: A comparison of faces and scenes. NeuroImage, 17, 317–323. PubMedGoogle Scholar
  37. Henik, A., Rafal, R., & Rhodes, D. (1984). Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. Journal of Cognitive Neuroscience, 6, 400–411. Google Scholar
  38. Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57, 787–795.Google Scholar
  39. Hommel, B., & Schneider, W. X. (2002). Visual attention and manual response selection: Distinct mechanisms operating on the same codes. Visual Cognition, 9, 392–420.Google Scholar
  40. Hopkins, L. S., Helmstetter, F. J., & Hannula, D. E. (2016). Eye movements are captured by a perceptually simple conditioned stimulus in the absence of explicit contingency knowledge. Emotion.
  41. Hunt, A. R., Cooper, R. M., Hungr, C., & Kingstone, A. (2007a). The effect of emotional faces on eye movements and attention. Visual Cognition, 15(5), 513–531.
  42. Hunt, A. R., von Muhlenen, A., & Kingstone, A. (2007b). The time course of attentional. and oculomotor capture reveals a common cause. Journal of Experimental Psychology: Human Perception and Performance, 33(2), 271–284.
  43. Keil, A., Miskovic, V., Gray, M. J., & Martinovic, J. (2013). Luminance, but not chromatic visual pathways, mediate amplification of conditioned danger signals in human visual cortex. European Journal of Neuroscience, 38(9), 3356-3362.PubMedGoogle Scholar
  44. Kissler, J., & Keil, A. (2008). Look–don’t look! How emotional pictures affect pro- and anti-saccades. Experimental Brain Research, 188(2), 215–222. PubMedGoogle Scholar
  45. Koster, E. H. W., Crombez, G., Van Damme, S., Verschuere, B., & De Houwer, J. (2004). Does imminent threat capture and hold attention? Emotion, 4(3), 312–317. PubMedGoogle Scholar
  46. Krauzlis, R. J., Lovejoy, L. P., & Zenon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165–182. PubMedGoogle Scholar
  47. Lang, P. J., Ghman, A., & Vaitl, D. (1988). The international affective picture system [photographic slides]. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida.Google Scholar
  48. LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44(12), 1229-1238. PubMedGoogle Scholar
  49. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184. PubMedGoogle Scholar
  50. Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A., . . . Williams, L. M. (2005). A direct brainstem-amygdala-cortical ‘alarm’ system for subliminal signals of fear. NeuroImage, 24(1), 235–243.
  51. Linke, R., De Lima, A. D., Schwegler, H., & Pape, H. C. (1999). Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala. Journal of Comparative Neurology, 403(2), 158–170.PubMedGoogle Scholar
  52. Lipp, O. V., & Waters, A. M. (2007). When danger lurks in the background: Attentional capture by animal fear-relevant distractors is specific and selectively enhanced by animal fear. Emotion, 7(1), 192–200. PubMedGoogle Scholar
  53. Lundqvist, D., Esteves, F., & Öhman, A. (1999). The face of wrath: Critical features for conveying facial threat. Cognition & Emotion, 13(6), 691–711.Google Scholar
  54. Maljkovic, V., & Nakayama, K. (1994). Priming of popout: I. Role of features. Memory and Cognition, 22, 657–672. PubMedGoogle Scholar
  55. Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science, 6(2), 114–133. PubMedPubMedCentralGoogle Scholar
  56. McSorley, E., Haggard, P., & Walker, R. (2006). Time course of oculomotor inhibition revealed by saccade trajectory modulation. Journal of Neurophysiology, 96(3), 1420–1424. PubMedGoogle Scholar
  57. McSorley, E., Haggard, P., & Walker, R. (2009). The spatial and temporal shape of oculomotor inhibition. Vision Research, 49(6), 608–614. PubMedGoogle Scholar
  58. McSorley, E., & van Reekum, C. M. (2013). The time course of implicit affective picture processing: An eye movement study. Emotion, 13(4), 769–773. PubMedGoogle Scholar
  59. Meeter, M., Van der Stigchel, S., & Theeuwes, J. (2010). A competitive integration model of exogenous and endogenous eye movements. Biological Cybernetics, 102(4), 271–291. PubMedGoogle Scholar
  60. Moors, A. (2009). Theories of emotion causation: A review. Cognition & Emotion, 23(4), 625–662. Google Scholar
  61. Morris, J. S., DeGelder, B., Weiskrantz, L., & Dolan, R. J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 124, 1241–1252. PubMedGoogle Scholar
  62. Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1680–1685. PubMedPubMedCentralGoogle Scholar
  63. Mulckhuyse, M., & Crombez, G. (2014). Disentangling attention from action in the emotional spatial cueing task. Cognition and Emottion, 28(7), 1223–1241. Google Scholar
  64. Mulckhuyse, M., Crombez, G., & Van der Stigchel, S. (2013). Conditioned fear modulates visual selection. Emotion, 13(3), 529-536. PubMedGoogle Scholar
  65. Mulckhuyse, M., & Dalmaijer, E. S. (2016). Distracted by danger: Temporal and spatial dynamics of visual selection in the presence of threat. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 315–324. Google Scholar
  66. Mulckhuyse, M., Van der Stigchel, S., & Theeuwes, J. (2009). Early and late modulation of saccade deviations by target distractor similarity. Jouirnal of Neurophysiology, 102(3), 1451–1458. PubMedGoogle Scholar
  67. Mulckhuyse, M., van Zoest, W., & Theeuwes, J. (2008). Capture of the eyes by relevant and irrelevant onsets. Experimental Brain Research, 186(2), 225–235. PubMedGoogle Scholar
  68. Munoz, D. P., Dorris, M. C., Pare, M., & Everling, S. (2000). On your mark, get set: Brainstem circuitry underlying saccadic initiation. Canadian Journal of Physiology and Pharmacology, 78(11), 934–944. PubMedGoogle Scholar
  69. Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5, 218–228. PubMedGoogle Scholar
  70. Munoz, D. P., & Wurtz, R. H. (1992). Role of the rostral superior colliculus in active visual fixation and execution of express saccades. Journal of Neurophysiology, 67, 1000–1002.PubMedGoogle Scholar
  71. Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 1–8.
  72. Notebaert, L., Crombez, G., Van Damme, S., De Houwer, J., & Theeuwes, J. (2011). Signals of threat do not capture, but prioritize, attention: A conditioning approach. Emotion, 11(1), 81–89. PubMedGoogle Scholar
  73. Nummenmaa, L., Hyona, J., & Calvo, M. G. (2006). Eye movement assessment of selective attentional capture by emotional pictures. Emotion, 6(2), 257–268. PubMedGoogle Scholar
  74. Nummenmaa, L., Hyona, J., & Calvo, M. G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 305–323. PubMedGoogle Scholar
  75. Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466–478. Google Scholar
  76. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483–522. PubMedGoogle Scholar
  77. Peck, C. J., Lau, B., & Salzman, C. D. (2013). The primate amygdala combines information about space and value. Nature Neuroscience, 16(3), 340–348. PubMedPubMedCentralGoogle Scholar
  78. Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773–783. PubMedPubMedCentralGoogle Scholar
  79. Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17, 292–299.PubMedPubMedCentralGoogle Scholar
  80. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25. PubMedGoogle Scholar
  81. Pourtois, G., Schettino, A., & Vuilleumier, P. (2013). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, 92(3), 492–512. PubMedGoogle Scholar
  82. Rempel-Clower, N.L. (2007). Role of orbitofrontal cortex connections in emotion. Annals of the New York Academy of Sciences 1121, 72–86.PubMedGoogle Scholar
  83. Richards, H. J., Benson, V., Donnelly, N., & Hadwin, J. A. (2014). Exploring the function of selective attention and hypervigilance for threat in anxiety. Clinical Psychology Review, 34(1), 1–13. PubMedGoogle Scholar
  84. Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians—Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40. PubMedGoogle Scholar
  85. Ro, T., Henik, A., Machado, L., & Rafal, R. D. (1997). Transcranial magnetic stimulation of the prefrontal cortex delays contralateral endogenous saccades. Journal of Cognitive Neuroscience, 9, 433–440. PubMedGoogle Scholar
  86. Sander, D., Grafman, J. & Zalla, T. (2003). The human amygdala: an evolved system for relevance detection. Nature Rev. Neurosci. 14, 303–316Google Scholar
  87. Schall, J. D. (1995). Neural basis of saccade target selection. Reviews in the Neurosciences, 6(1), 63–85.PubMedGoogle Scholar
  88. Schall, J. D. (2002). The neural selection and control of saccades by the frontal eye field. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 357(1424), 1073–1082. PubMedPubMedCentralGoogle Scholar
  89. Schiller, P. H., Malpeli, J. G., & Schein, S. J. (1979). Composition of geniculostriate input of superior colliculus of the rhesus monkey. Journal of Neurophysiology, 42, 1124–1133.PubMedGoogle Scholar
  90. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2012). The presence of threat affects saccade trajectories. Visual Cognition, 20(3), 284–299. Google Scholar
  91. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Potential threat attracts attention and interferes with voluntary saccades. Emotion, 15(3), 329–338. PubMedGoogle Scholar
  92. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2017). The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 31(5), 845–857. PubMedGoogle Scholar
  93. Sehlmeyer, C., Schoning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., & Konrad, C. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PLOS ONE, 4(6), e5865. PubMedPubMedCentralGoogle Scholar
  94. Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L., & Goebel, R. (2012). Subcortical connections to human amygdala and changes following destruction of the visual cortex. Current Biology, 22(15), 1449–1455. PubMedGoogle Scholar
  95. Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799–806,PubMedGoogle Scholar
  96. Theeuwes, J., Kramer, A. E, Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9, 379–385.Google Scholar
  97. Timbie, C., & Barbas, H. (2015). Pathways for Emotions: Specializations in the amygdalar, mediodorsal thalamic, and posterior orbitofrontal network. J Neurosci;35: 11976–11987.PubMedPubMedCentralGoogle Scholar
  98. Tipper, S. P., Howard, L. A., & Jackson, S. R. (1997). Selective reaching to grasp: Evidence for distractor interference effects. Visual Cognition, 4(1), 1–38. Google Scholar
  99. Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256–271. PubMedGoogle Scholar
  100. Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience and Biobehavioral Reviews, 30(5), 666–679. PubMedGoogle Scholar
  101. Vuilleumier, P. (2002). Facial expression and selective attention. Current Opinion in Psychiatry, 15(3), 291–300. Google Scholar
  102. Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9(12), 585–594. PubMedGoogle Scholar
  103. Vuilleumier, P. (2015). Affective and motivational control of vision. Current Opinion in Neurology, 28(1), 29–35. PubMedGoogle Scholar
  104. Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6(6), 624–631. PubMedGoogle Scholar
  105. Walker, R., Deubel, H., Schneider, W. X., & Findlay, J. M. (1997) Effect of remote distractors on saccade programming. Journal of Neurophysiology, 78, 1108–1119. PubMedGoogle Scholar
  106. Walker, R., Walker, D. G., Husain, M., & Kennard, C. (2000). Control of voluntary and reflexive saccades. Experimental Brain Research, 130, 540–544. PubMedGoogle Scholar
  107. West, G. L., Al-Aidroos, N., Susskind, J., & Pratt, J. (2011). Emotion and action: The effect of fear on saccadic performance. Experimental Brain Research, 209(1), 153–158. PubMedGoogle Scholar
  108. Whalen, P. J., Kagan, J., Cook, R. G., Davis, F. C., Kim, H., Polis, S., . . . Johnstone, T. (2004). Human amygdala responsivity to masked fearful eye whites. Science, 306(5704), 2061–2061.
  109. White, B. J., Kan, J. Y., Levy, R., Itti, L., & Munoz, D. P. (2017). Superior colliculus encodes visual saliency before the primary visual cortex. Proceedings of the Natlional Academy of Sciences of the United States of America.
  110. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention—Evidence from visual-search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621. PubMedGoogle Scholar
  111. Yiend, J. (2010). The effects of emotion on attention: A review of attentional processing of emotional information. Cognition & Emotion, 24(1), 3–47. Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
  2. 2.Behavioural Science InstituteRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations