Neural response to prosocial scenes relates to subsequent giving behavior in adolescents: A pilot study

Article

Abstract

Adolescence is characterized by extensive neural development and sensitivity to social context, both of which contribute to engaging in prosocial behaviors. Although it is established that prosocial behaviors are linked to positive outcomes in adulthood, little is known about the neural correlates of adolescents’ prosociality. Identifying whether the brain is differentially responsive to varying types of social input may be important for fostering prosocial behavior. We report pilot results using new stimuli and an ecologically valid donation paradigm indicating (1) brain regions typically recruited during socioemotional processing evinced differential activation when adolescents evaluated prosocial compared with social or noninteractive scenes (N = 20, ages 13–17 years, MAge = 15.30 years), and (2) individual differences in temporoparietal junction recruitment when viewing others’ prosocial behaviors were related to adolescents’ own charitable giving. These novel findings have significant implications for understanding how the adolescent brain processes prosocial acts and for informing ways to support adolescents to engage in prosocial behaviors in their daily lives.

Keywords

Adolescence Donating Prosocial fMRI Temporoparietal junction 

Supplementary material

13415_2018_573_MOESM1_ESM.docx (137 kb)
ESM 1 (DOCX 137 kb)

References

  1. Aknin, L. B. Barrington-Leigh, C. P., Dunn, E. W., Helliwell, J. F., Burns, J., Biswas-Diener, R.,... Ashton-James, C. E. (2013). Prosocial spending and well-being: Cross-cultural evidence for a psychological universal. Journal of Personality and Social Psychology, 104, 635–652.CrossRefPubMedGoogle Scholar
  2. Bandura, A., Caprara, G. V., Barbaranelli, C., Pastorelli, C., & Regalia, C. (2001). Sociocognitive self-regulatory mechanisms governing transgressive behavior. Journal of Personality and Social Psychology, 80, 125–135.CrossRefPubMedGoogle Scholar
  3. Beckmann, C. F., Jenkinson M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in fMRI. NeuroImage, 20,1052–1063.CrossRefPubMedGoogle Scholar
  4. Berkman, E. T., & Falk, E. B. (2013). Beyond brain mapping: Using neural measures to predict real-world outcomes. Current Directions in Psychological Science, 22, 45–50.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267–277.CrossRefPubMedGoogle Scholar
  6. Blakemore, S. J., den Ouden, H., Choudhury, S., & Frith, C. (2007). Adolescent development of the neural circuitry for thinking about intentions. Social Cognitive and Affective Neuroscience, 2, 130–139.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blakemore, S. J., & Mills, K. L. (2014). Is adolescence a sensitive period for sociocultural processing? Annual Review of Psychology, 65, 187–207.CrossRefPubMedGoogle Scholar
  8. Burnett, S., Sebastian, C., Cohen Kadosh, K., & Blakemore, S. J. (2011). The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioral studies. Neuroscience & Biobehavioral Reviews, 35, 1654–1664.CrossRefGoogle Scholar
  9. Cascio, C. N., Scholz, C., & Falk, E. B. (2015). Social influence and the brain: Persuasion, susceptibility to influence and retransmission. Current Opinion in Behavioral Sciences, 3, 51–57.CrossRefGoogle Scholar
  10. Caspi, A., Harrington, H., & Moffitt, T. E. (2006). Socially isolated children 20 years later: Risk of cardiovascular disease. Archives of Pediatrics and Adolescent Medicine, 160, 805–811.CrossRefPubMedGoogle Scholar
  11. Chalmers, J. B., & Townsend, M. A. R. (1990). The effects of training in social perspective taking on socially maladjusted girls. Child Development, 61, 178–191.CrossRefPubMedGoogle Scholar
  12. Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636–650.CrossRefPubMedGoogle Scholar
  13. Eisenberg, N., Cumberland, A., Guthrie, I. K., Murphy, B. C., & Shepard, S. A. (2005). Age changes in prosocial responding and moral reasoning in adolescence and early adulthood. Journal of Research on Adolescence, 15, 235–260.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eisenberg, N., & Miller, P. A. (1987). The relation of empathy to prosocial and related behaviors. Psychological Bulletin, 101, 91–119.CrossRefPubMedGoogle Scholar
  15. Feigin, S., Owens, G., & Goodyear-Smith, F. (2014). Theories of human altruism: A systematic review. Annals of Neuroscience and Psychology, 1, 1–9.Google Scholar
  16. Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50, 531–534.CrossRefPubMedGoogle Scholar
  17. Galván, A. (2014). Insights about adolescent behavior, plasticity, and policy from Neuroscience Research. Neuron, 83, 262–265.CrossRefPubMedGoogle Scholar
  18. Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Developmental Psychology, 41, 625–635.CrossRefPubMedGoogle Scholar
  19. Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary based registration. NeuroImage, 48, 63–72.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hare, T. A., Camerer, C. F., Knoepfle, D. T., O’Doherty, J. P., & Rangel, A. (2010). Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. Journal of Neuroscience, 30, 583–590.CrossRefPubMedGoogle Scholar
  21. Layous, K., Nelson, S. K., Oberle, E., Schonert-Reichl, K. A., & Lyubomirsky, S. (2012). Kindness counts: Prompting prosocial behavior in preadolescents boosts peer acceptance and well-being. PLOS ONE, 7, e51380.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marsh, A. A., Stoycos, S. A., Brethel-Haurwitz, K. M., Robinson, P., VanMeter, J. W., & Cardinale, E. M. (2014). Neural and cognitive characteristics of extraordinary altruists. Proceedings of the National Academy of Sciences, 111, 15036–15041.CrossRefGoogle Scholar
  23. Mills, K. L., Lalonde, F., Clasen, L. S., Giedd, J. N., & Blakemore, S. J. (2014). Developmental changes in the structure of the social brain in late childhood and adolescence. Social Cognitive and Affective Neuroscience, 9, 123–131.CrossRefPubMedGoogle Scholar
  24. Moll, J., Krueger, F., Zahn, R., Pardini, M., de Oliveira-Souza, R., & Grafman, J. (2006). Human fronto-mesolimbic networks guide decisions about charitable donation. Proceedings of the National Academy of Sciences, 103, 15623–15628.CrossRefGoogle Scholar
  25. Morishima, Y., Schunk, D., Bruhin, A., Ruff, C. C., & Fehr, E. (2012). Linking brain structure and activation in temporoparietal junction to explain the neurobiology of human altruism. Neuron, 75, 73–79.CrossRefPubMedGoogle Scholar
  26. Mumford, J. A. (2012). A power calculation guide for fMRI studies. Social Cognitive Affective Neuroscience, 7, 738–742.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nelson, E. E., Jarcho, J. M., & Guyer, A. E. (2016). Social re-orientation and brain development: An expanded and updated view. Developmental Cognitive Neuroscience, 17, 118–127.CrossRefPubMedGoogle Scholar
  28. Nichols, T. E. (2007). Easythresh_conj—Quick method of getting conjunction stats outside of Feat [Web page]. Available at http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/fsl/easythresh_conj.sh
  29. Poline, J. B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. NeuroImage, 5,83–96.CrossRefPubMedGoogle Scholar
  30. Price, C. J., & Friston, K. J. (1997). Cognitive conjunction: A new approach to brain activation experiments. NeuroImage, 5, 261–270.CrossRefPubMedGoogle Scholar
  31. Radke-Yarrow, M., Zahn-Waxler, C., & Chapman, M. (1983). Children’s prosocial dispositions and behavior. In P. Mussen & E. M. Hetherington (Eds.), Handbook of child Psychology: Vol. 4. Socialization, personality, and social Development (4th ed., pp. 469–545). New York, NY: Wiley.Google Scholar
  32. Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Reviews Psychology, 62, 23–48.CrossRefGoogle Scholar
  33. Roth, D. L., Haley, W. E., Hovater, M., Perkins, M., Wadley, V. G., & Judd, S. (2013). Family caregiving and all-cause mortality: Findings from population-based propensity-matched analysis. American Journal of Epidemiology, 178, 1571–1578.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rushton, J. P., Chrisjohn, R. D., & Fekken, G. C. (1981). The altruistic personality and the self-report altruism scale. Personality and Individual Differences, 1, 292–302.Google Scholar
  35. Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 1–18.CrossRefPubMedGoogle Scholar
  36. Somerville, L. H. (2013). The teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Sciences, 22, 121–27.Google Scholar
  37. Symeonidou, I., Dumontheil, I., Chow, W. Y., & Breheny, R. (2016). Development of online use of theory of mind during adolescence: An eye-tracking study. Journal of Experimental Child Psychology, 149, 81–97.CrossRefPubMedGoogle Scholar
  38. Tankersley, D., Stowe, C. J., & Huettel, S. A. (2007). Altruism is associated with an increased neural response to agency. Nature Neuroscience, 10, 150–151.CrossRefPubMedGoogle Scholar
  39. Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Galván, A. (2013). Ventral striatum activation to prosocial rewards predicts longitudinal declines in adolescent risk taking. Developmental Cognitive Neuroscience, 3, 45–52.Google Scholar
  40. Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Galván, A. (2014). Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time. Proceedings of the National Academy of Sciences, 111, 6600–6605.CrossRefGoogle Scholar
  41. Telzer, E. H., Masten, C. L., Berkman, E. T., Lieberman, M. D., & Fuligni, A. J. (2011). Neural regions associated with self-control and mentalizing are recruited during prosocial behaviors towards the family. NeuroImage, 58, 242–249.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tusche, A., Böckler, A., Kanske, P., Trautwein, F. M., & Singer, T. (2016). Decoding the charitable brain: Empathy, perspective taking, and attention shifts differentially predict altruistic giving. Journal of Neuroscience, 36, 4719–4731.CrossRefPubMedGoogle Scholar
  43. Vaish, A., Carpenter, A., & Tomasello, M. (2009). Sympathy through affective perspective taking and its relation to prosocial behavior in toddlers. Developmental Psychology, 45, 534–43.Google Scholar
  44. van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A. R. B., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22, 60–70.CrossRefPubMedGoogle Scholar
  45. van der Meulen, M., van IJzendoorn, M. H., & Crone, E. A. (2016). Neural correlates of prosocial behavior: Compensating social exclusion in a four-player cyberball game. PLOS ONE, 11, e0159045.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Van Hoorn, J., Van Dijk, E., Güroglu, B., & Crone, E. A. (2016). Neural correlates of prosocial peer influence on public goods game donations during adolescence. Social Cognitive and Affective Neuroscience, 11, 923–933.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Woolrich, M. (2008). Robust group analysis using outlier inference. NeuroImage, 41, 286–301.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of PsychologyUniversity of California, DavisDavisUSA
  3. 3.Center for Mind and Brain, University of California, DavisDavisUSA
  4. 4.Department of Human Ecology, University of California, DavisDavisUSA
  5. 5.Brain Research Institute, University of California, Los AngelesLos AngelesUSA

Personalised recommendations