Reduction of implicit cognitive bias with cathodal tDCS to the left prefrontal cortex

  • Philipp Alexander Schroeder
  • Hans-Christoph Nuerk
  • Christian Plewnia


Implicit associations can interfere with cognitive operations and behavioral decisions without direct intention. Enhancement of neural activity with anodal transcranial direct current stimulation (tDCS) was proposed to reduce implicit associations by means of improved cognitive control. However, a targeted reduction of distractive implicit associations by inhibitory cathodal tDCS, recently shown in spatial–numerical associations, provides an interesting alternative approach to support goal-directed behavior with transcranial brain stimulation. To test this rationale with a sham-controlled cross-over design, a standardized Implicit Association Test (IAT) was performed by 24 healthy participants parallel to 1 mA cathodal or sham tDCS to the left prefrontal cortex. In this double-classification task, insect versus flower pictures and negative versus positive words are mapped together onto two shared response keys with crossed response assignments in separate blocks. Responses were faster when insect + negative and flower + positive stimuli required the same answer (IAT effect). Most critically, the IAT effect was reduced during cathodal tDCS as compared to sham stimulation. Thus, results are consistent with the proposed stimulation rationale, with previous observations, and complementary to previous studies using different tDCS configurations.


transcranial Direct Current Stimulation Cathodal tDCS Implicit associations IAT Prefrontal cortex 



This work was supported by the Bundesministerium für Bildung und Forschung [“ESPRIT” FKZ 01EE1407H to C.P., “GCBS” FKZ 01EE1403D to C.P.] and the Deutsche Forschungsgemeinschaft [PL 525/4-1, PL 525/6-1, PL 525/7-1 to C.P.].

Supplementary material

13415_2018_567_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)


  1. Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. The International Journal of Neuropsychopharmacology, 14(8), 1133–1145. CrossRefPubMedGoogle Scholar
  2. Cattaneo, Z., Mattavelli, G., Platania, E., & Papagno, C. (2011). The role of the prefrontal cortex in controlling gender-stereotypical associations: A TMS investigation. NeuroImage, 56(3), 1839–1846. CrossRefPubMedGoogle Scholar
  3. Chee, M. W., Sriram, N., Soon, C. S., & Lee, K. M. (2000). Dorsolateral prefrontal cortex and the implicit association of concepts and attributes. Neuroreport, 11(1), 135–140. CrossRefPubMedGoogle Scholar
  4. Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4(2), 81–89. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Crescentini, C., Aglioti, S. M., Fabbro, F., & Urgesi, C. (2014). Virtual lesions of the inferior parietal cortex induce fast changes of implicit religiousness/spirituality. Cortex, 54(1), 1–15. CrossRefPubMedGoogle Scholar
  6. De Houwer, J. (2002). The Implicit Association Test as a tool for studying dysfunctional associations in psychopathology: Strengths and limitations. Journal of Behavior Therapy and Experimental Psychiatry, 33(2), 115–133. CrossRefPubMedGoogle Scholar
  7. De Houwer, J., Crombez, G., Koster, E. H. W., & De Beul, N. (2004). Implicit alcohol-related cognitions in a clinical sample of heavy drinkers. Journal of Behavior Therapy and Experimental Psychiatry, 35(4), 275–286. CrossRefPubMedGoogle Scholar
  8. De Houwer, J., Geldof, T., & De Bruycker, E. (2005). The implicit association test as a general measure of similarity. Canadian Journal of Experimental Psychology, 59(4), 228–239. CrossRefPubMedGoogle Scholar
  9. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. CrossRefGoogle Scholar
  10. den Uyl, T. E., Gladwin, T. E., Rinck, M., Lindenmeyer, J., & Wiers, R. W. (2017). A clinical trial with combined transcranial direct current stimulation and alcohol approach bias retraining. Addiction Biology, 22(6), 1632–1640. CrossRefGoogle Scholar
  11. den Uyl, T. E., Gladwin, T. E., & Wiers, R. W. (2015). Transcranial direct current stimulation, implicit alcohol associations and craving. Biological Psychology, 105, 37–42. CrossRefGoogle Scholar
  12. Di Rosa, E., Bardi, L., Umiltà, C., Masina, F., Forgione, M., & Mapelli, D. (2017). Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account. Cortex, 93, 68–78. CrossRefPubMedGoogle Scholar
  13. Fiedler, K., Messner, C., & Bluemke, M. (2006). Unresolved problems with the “I”, the “A”, and the “T”: A logical and psychometric critique of the Implicit Association Test (IAT). European Review of Social Psychology, 17(1), 74–147. CrossRefGoogle Scholar
  14. Fischer, M. H., & Shaki, S. (2016). Measuring spatial-numerical associations: Evidence for a purely conceptual link. Psychological Research, 80(1), 109–112. CrossRefPubMedGoogle Scholar
  15. Gawronski, B., & De Houwer, J. (2014). Implicit measures in social and personality psychology. Social and Personality Psychology, 1(519), 1–28. Retrieved from Google Scholar
  16. Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451–482. CrossRefPubMedGoogle Scholar
  17. Gladwin, T. E., den Uyl, T. E., & Wiers, R. W. (2012). Anodal tDCS of dorsolateral prefontal cortex during an Implicit Association Test. Neuroscience Letters, 517, 82–86. CrossRefPubMedGoogle Scholar
  18. Gray, N. S., Brown, A. S., MacCulloch, M. J., Smith, J., & Snowden, R. J. (2005). An implicit test of the associations between children and sex in pedophiles. Journal of Abnormal Psychology, 114(2), 304–308. CrossRefPubMedGoogle Scholar
  19. Greenwald, A. G., Mcghee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 1464–1480. CrossRefPubMedGoogle Scholar
  20. Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197–216. CrossRefPubMedGoogle Scholar
  21. Greenwald, A. G., Poehlman, T. A., Uhlmann, E., & Banaji, M. R. (2009). Understanding and using the Implicit Association Test: III. Meta-analysis of predictive validity. Journal of Personality and Social Psychology, 97(1), 17–41. CrossRefPubMedGoogle Scholar
  22. Hofmann, W., Rauch, W., & Gawronski, B. (2007). And deplete us not into temptation: Automatic attitudes, dietary restraint, and self-regulatory resources as determinants of eating behavior. Journal of Experimental Social Psychology, 43(3), 497–504. CrossRefGoogle Scholar
  23. Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550. CrossRefPubMedGoogle Scholar
  24. Houben, K., & Wiers, R. W. (2006). A test of the salience asymmetry interpretation of the alcohol-IAT. Experimental Psychology, 53(4), 292–300. CrossRefPubMedGoogle Scholar
  25. Huijding, J., De Jong, P. J., Wiers, R. W., & Verkooijen, K. (2005). Implicit and explicit attitudes toward smoking in a smoking and a nonsmoking setting. Addictive Behaviors, 30(5), 949–961. CrossRefPubMedGoogle Scholar
  26. Hussey, I. (2017). Open source implicit association test.
  27. Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216(1), 1–10. CrossRefPubMedGoogle Scholar
  28. Kemps, E., & Tiggemann, M. (2015). Approach bias for food cues in obese individuals. Psychology & Health, 30(3), 370–380. CrossRefGoogle Scholar
  29. Meissner, F., & Rothermund, K. (2013). Estimating the contributions of associations and recoding in the Implicit Association Test: The ReAL model for the IAT. Journal of Personality and Social Psychology, 104(1), 45–69. CrossRefPubMedGoogle Scholar
  30. Mierke, J., & Klauer, K. C. (2001). Implicit association measurement with the IAT: Evidence for effects of executive control processes. Experimental Psychology, 48(2), 107–122. CrossRefGoogle Scholar
  31. Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114(4), 600–604. CrossRefPubMedGoogle Scholar
  32. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Harvesting implicit group attitudes and beliefs from a demonstration web site. Group Dynamics: Theory, Research, and Practice, 6(1), 101–115. CrossRefGoogle Scholar
  34. Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2007). The Implicit Association Test at Age 7: A methodological and conceptual review. In J. A. Bargh (Ed.), Automatic processes in social thinking and behavior (pp. 265–292). New York, NY: Psychology Press. Google Scholar
  35. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology, 57(5), 835–863. CrossRefPubMedGoogle Scholar
  36. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. CrossRefPubMedGoogle Scholar
  37. Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1/2), 8–13. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416–42. CrossRefPubMedGoogle Scholar
  39. Proctor, R. W., & Xiong, A. (2015). Polarity correspondence as a general compatibility principle. Current Directions in Psychological Science, 24(6), 446-451. CrossRefGoogle Scholar
  40. Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Roefs, A., Huijding, J., Smulders, F. T. Y., MacLeod, C. M., de Jong, P. J., Wiers, R. W., & Jansen, A. T. M. (2011). Implicit measures of association in psychopathology research. Psychological Bulletin, 137(1), 149–193. CrossRefPubMedGoogle Scholar
  42. Rothermund, K., & Wentura, D. (2004). Underlying processes in the Implicit Association Test: Dissociating salience from associations. Journal of Experimental Psychology: General, 133(2), 139–165. CrossRefGoogle Scholar
  43. Ruf, S. P., Fallgatter, A. J., & Plewnia, C. (2017). Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports, 7(1), 876. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schroeder, P. A., Dresler, T., Bahnmueller, J., Artemenko, C., Cohen Kadosh, R., & Nuerk, H.-C. (2017). Cognitive enhancement of numerical and arithmetic capabilities: A mini-review of available transcranial electric stimulation studies. Journal of Cognitive Enhancement, 1(1), 39–47. CrossRefGoogle Scholar
  45. Schroeder, P. A., Nuerk, H.-C., & Plewnia, C. (2017). Prefrontal neuromodulation reverses spatial associations of non-numerical sequences, but not numbers. Biological Psychology, 128, 39–49. CrossRefPubMedGoogle Scholar
  46. Schroeder, P. A., Pfister, R., Kunde, W., Nuerk, H.-C., & Plewnia, C. (2016). Counteracting implicit conflicts by electrical inhibition of the prefrontal cortex. Journal of Cognitive Neuroscience, 28(11), 1737–1748. CrossRefPubMedGoogle Scholar
  47. Schroeder, P. A., & Plewnia, C. (2016). Beneficial effects of cathodal transcranial direct current stimulation (tDCS) on cognitive performance. Journal of Cognitive Enhancement, 1(1), 5–9. CrossRefGoogle Scholar
  48. Sellaro, R., Derks, B., Nitsche, M. A., Hommel, B., van den Wildenberg, W. P. M., van Dam, K., & Colzato, L. S. (2015). Reducing prejudice through brain stimulation. Brain Stimulation, 8(5), 1–7. CrossRefGoogle Scholar
  49. Wiers, R. W., Van Woerden, N., Smulders, F. T. Y., & De Jong, P. J. (2002). Implicit and explicit alcohol-related cognitions in heavy and light drinkers. Journal of Abnormal Psychology, 111(4), 648–658. CrossRefPubMedGoogle Scholar
  50. Wolkenstein, L., Zeiller, M., Kanske, P., & Plewnia, C. (2014). Induction of a depression-like negativity bias by cathodal transcranial direct current stimulation. Cortex, 59, 103–112. CrossRefPubMedGoogle Scholar
  51. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, R. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50(4), 489–525.Google Scholar
  52. Zaehle, T., Sandmann, P., Thorne, J. D., Jäncke, L., & Herrmann, C. S. (2011). Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: Combined behavioural and electrophysiological evidence. BMC Neuroscience, 12, 2. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Philipp Alexander Schroeder
    • 1
    • 2
  • Hans-Christoph Nuerk
    • 2
    • 3
    • 4
  • Christian Plewnia
    • 1
    • 5
  1. 1.Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional NeuropsychiatryUniversity of TübingenTübingenGermany
  2. 2.Department of Psychology, Diagnostics and Cognitive NeuropsychologyUniversity of TübingenTübingenGermany
  3. 3.Leibniz-Institut für WissensmedienTübingenGermany
  4. 4.LEAD Graduate School & Research NetworkUniversity of TübingenTübingenGermany
  5. 5.Werner Reichardt Centre for Integrative Neuroscience (CIN)TübingenGermany

Personalised recommendations