The effects of testing environment, experimental design, and ankle loading on calibration to perturbed optic flow during locomotion

Abstract

Calibration is the process by which the execution of actions becomes scaled to the (changing) relationship between environmental features and the actor’s action capabilities. Though much research has investigated how individuals calibrate to perturbed optic flow, it remains unclear how different experimental factors contribute to the magnitude of calibration transfer. In the present study, we assessed how testing environment (Experiment 1), an adapted pretest-calibration-posttest design (Experiment 2), and bilateral ankle loading (Experiment 3) affected the magnitude of calibration to perturbed optic flow. We found that calibration transferred analogously to real-world and virtual environments. Although the magnitude of calibration transfer found here was greater than that reported by previous researchers, it was evident that calibration occurred rapidly and quickly plateaued, further supporting the claim that calibration is often incomplete despite continued calibration trials. We also saw an asymmetry in calibration magnitude, which may be due to a lack of appropriate perceptual-motor scaling prior to calibration. The implications of these findings for the assessment of distance perception and calibration in real-world and virtual environments are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adams, H., Narasimham, G., Rieser, J., Creem-Regehr, S., Stefanucci, J., & Bodenheimer, B. (2018). Locomotive recalibration and prism adaptation of children and teens in immersive virtual environments. IEEE Transactions on Visualization and Computer Graphics, 24(4), 1408–1417. https://doi.org/10.1109/TVCG.2018.2794072

    Article  PubMed  Google Scholar 

  2. Altenhoff, B. M., Napieralski, P. E., Long, L. O., Bertrand, J. W., Pagano, C. C., Babu, S. V., & Davis, T. A. (2012). Effects of visual and haptic feedback on near-field depth perception in an immersive virtual environment. Proceedings of the ACM Symposium on Applied Perception (pp. 71–78). New York, NY: ACM.

  3. Banton, T., Stefanucci, J., Durgin, F., Fass, A., & Proffitt, D. (2005). The perception of walking speed in a virtual environment. Presence: Teleoperators and Virtual Environments, 14(4), 394–406. https://doi.org/10.1162/105474605774785262

    Article  Google Scholar 

  4. Bertenthal, B. I., Rose, J. L., & Bai, D. L. (1997). Perception-action coupling in the development of visual control of posture. Journal of Experimental Psychology: Human Perception and Performance, 23(6), 1631–1643.

    PubMed  Google Scholar 

  5. Bhargava, A., Lucaites, K. M., Hartman, L. S., Solini, H., Bertrand, J. W., Robb, A. C., … Babu, S. V. (2020). Revisiting affordance perception in contemporary virtual reality. Virtual Reality, 1–12. https://doi.org/10.1007/s10055-020-00432-y

  6. Bickel, R. (2007). Multilevel analysis for applied research: It’s just regression! New York, NY: Guilford Press.

    Google Scholar 

  7. Bingham, G. P., & Pagano, C. C. (1998). The necessity of a perception-action approach to definite distance perception: Monocular distance perception to guide reaching. Journal of Experimental Psychology: Human Perception and Performance, 24, 145–168. https://doi.org/10.1037/0096-1523.24.1.145

    Article  PubMed  Google Scholar 

  8. Bingham, G. P., Pan, J. S., & Mon-Williams, M. A. (2014). Calibration is both functional and anatomical. Journal of Experimental Psychology: Human Perception and Performance, 40, 61–70. https://doi.org/10.1037/a0033458

    Article  PubMed  Google Scholar 

  9. Brand, M. T., & de Oliveira, R. F. (2017). Recalibration in functional perceptual-motor tasks: A systematic review. Human Movement Science, 56, 54–70. https://doi.org/10.1016/j.humov.2017.10.020

    Article  PubMed  Google Scholar 

  10. Browning, R. C., Modica, J. R., Kram, R., & Goswami, A. (2007). The effects of adding mass to the legs on the energetics and biomechanics of walking. Medicine & Science in Sports & Exercise, 39, 515–525.

    Article  Google Scholar 

  11. Bruggeman, H., & Warren, W. H. (2010). The direction of walking—but not throwing or kicking—is adapted by optic flow. Psychological Science, 21(7), 1006–1013. https://doi.org/10.1177/0956797610372635

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple correlation/regression analysis for the social sciences (3rd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

  13. Day, B., Ebrahimi, E., Hartman, L.S., Pagano, C. C., Robb, A. C., & Babu, S. V. (2019). Examining the effects of altered avatars on perception-action in virtual reality. Journal of Experimental Psychology: Applied, 25, 1–24.

    PubMed  Google Scholar 

  14. Durgin, F. H., Pelah, A., Fox, L. F., Lewis, J., Kane, R., & Walley, K. A. (2005). Self-motion perception during locomotor recalibration: More than meets the eye. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 398–419. https://doi.org/10.1037/0096-1523.31.3.398

    Article  PubMed  Google Scholar 

  15. Ebrahimi, E., Altenhoff, B., Pagano, C. C., & Babu, S. V. (2015, March 23–24). Carryover effects of calibration to visual and proprioceptive information on near field distance judgments in 3D user interaction. Proceedings of the IEEE 10th Symposium on 3D User Interfaces, Arles, France.

  16. Fajen, B. R. (2005). Perceiving possibilities for action: On the necessity of calibration and perceptual learning for the visual guidance of action. Perception, 34, 717–740.

    Article  Google Scholar 

  17. Fernández-Ruiz, J., Hall-Haro, C., Díaz, R., Mischner, J., Vergara, P., & Lopez-Garcia, J. C. (2000). Learning motor synergies makes use of information on muscular load. Learning & Memory, 7(4), 193–198.

    Article  Google Scholar 

  18. Franchak, J. M. (2020). Calibration of perception fails to transfer between functionally similar affordances. Quarterly Journal of Experimental Psychology, 73, 1311–1325. https://doi.org/10.1177/1747021820926884

    Article  Google Scholar 

  19. Geuss, M. N., Stefanucci, J. K., Creem-Regehr, S. H., & Thompson, W. B. (2012). Effect of viewing plane on perceived distances in real and virtual environments. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1242–1253. https://doi.org/10.1037/a0027524

    Article  PubMed  Google Scholar 

  20. Graves, J. E., Martin, D., Miltenberger, L. A., & Pollock, M. L. (1988). Physiological responses to walking with hand weights, wrist weights, and ankle weights. Medicine & Science in Sports & Exercise, 20(3), 265–271.

    Article  Google Scholar 

  21. Harrison, S. J. (2020). Human odometry with a two-legged hopping gait: A test of the gait symmetry theory. Ecological Psychology, 32(1), 58–78. https://doi.org/10.1080/10407413.2019.1708200

    Article  Google Scholar 

  22. Kelly, J. W., Cherep, L. A., & Siegel, Z. D. (2017). Perceived space in the HTC Vive. ACM Transactions on Applied Perception, 15(1), 1–16. https://doi.org/10.1145/3106155

    Article  Google Scholar 

  23. Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2009). Evidence for motor simulation in imagined locomotion. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1458–1471. https://doi.org/10.1037/a0015786

    Article  PubMed  Google Scholar 

  24. Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2013). Does perceptual-motor calibration generalize across two different forms of locomotion? Investigations of walking and wheelchairs. PLOS ONE, 8(2), e54446. https://doi.org/10.1371/journal.pone.0054446

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2015). Testing the mechanisms underlying improved distance judgments in virtual environments. Perception, 44(4), 446–453. https://doi.org/10.1068/p7929

    Article  PubMed  Google Scholar 

  26. Loomis, J. M., da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906–921. https://doi.org/10.1037/0096-1523.18.4.906

    Article  PubMed  Google Scholar 

  27. Loomis, J. M., & Knapp, J. M. (2003). Visual perception of egocentric distance in real and virtual environments. In L. J. Hettinger & M. W. Haas (Eds.), Virtual and adaptive environments: Applications, implications, and human performance issues (Vol. 11, pp. 21–46). Mahwah, NJ: Erlbaum. https://doi.org/10.1201/9781410608888.pt1

    Google Scholar 

  28. Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sittting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361–370.

    PubMed  Google Scholar 

  29. Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms: II. Specificity and storage of multiple gaze--throw calibrations. Brain, 119(4), 1199–1211. https://doi.org/10.1093/brain/119.4.1199

    Article  PubMed  Google Scholar 

  30. Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Herbert, P., Warren, W., Rieser, J. J., & Willemsen, P. (2004). Visual motion influences locomotion in a treadmill virtual environment. Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization (pp. 19–22). https://doi.org/10.1145/1012551.1012554

  31. Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Willemsen, P., Pick, Jr., H. L., & Rieser, J. J. (2007). Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception, 4(1), 4. https://doi.org/10.1145/1227134.1227138

  32. Pagano, C. C., & Isenhower, R. W. (2008). Expectation affects verbal judgments but not reaches to visually perceived egocentric distances. Psychonomic Bulletin & Review, 15, 437–442.

    Article  Google Scholar 

  33. Pan, J. S., Coats, R. O., & Bingham, G. P. (2014). Calibration is action specific but perturbation of perceptual units is not. Journal of Experimental Psychology: Human Perception and Performance, 40, 404–415. https://doi.org/10.1037/a0033795

    Article  PubMed  Google Scholar 

  34. Paquet, N., Taillon-Hobson, A., & Lajoie, Y. (2015). Effect of ankle weight on blind navigation. Perceptual and Motor Skills, 120(2), 502–518. https://doi.org/10.2466/25.PMS.120v10x0

    Article  PubMed  Google Scholar 

  35. Proffitt, D. R. (2008). An action-specific approach to spatial perception. In R. Klatzky, B. MacWhinney, & M. Berhmann (Eds.), Embodiment, ego-space, and action (pp. 179–202). Mahwah, NJ: Erlbaum.

    Google Scholar 

  36. Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in perceiving distance. Psychological Science, 14(2), 106–112. https://doi.org/10.1111/1467-9280.t01-1-01427

    Article  PubMed  Google Scholar 

  37. Redding, G. M., & Wallace, B. (2003). Dual prism adaptation: Calibration or alignment? Journal of Motor Behavior, 35(4), 399–408. https://doi.org/10.1080/00222890309603159

    Article  PubMed  Google Scholar 

  38. Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 480–497.

    PubMed  Google Scholar 

  39. Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., & Willemsen, P. (2005). Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Transactions on Applied Perception, 2(1), 35–45. https://doi.org/10.1145/1048687.1048690

    Article  Google Scholar 

  40. Shibata, H., Gyoba, J., & Takeshima, Y. (2012). Perception of the end position of a limb loaded with a weight. Attention, Perception, & Psychophysics, 74(1), 225–238. https://doi.org/10.3758/s13414-011-0232-5

    Article  Google Scholar 

  41. Siegel, Z. D., & Kelly, J. W. (2017). Walking through a virtual environment improves perceived size within and beyond the walked space. Attention, Perception, & Psychophysics, 79(1), 39–44. https://doi.org/10.3758/s13414-016-1243-z

    Article  Google Scholar 

  42. Skinner, H. B., & Barrack, R. L. (1990). Ankle weighting effect on gait in able-bodied adults. Archives of Physical Medicine and Rehabilitation, 71(2), 112–115.

    PubMed  Google Scholar 

  43. Snijders, T. A., & Bosker, R. J. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: SAGE Publications.

    Google Scholar 

  44. Solini, H. M., Bhargava, A., & Pagano, C. C. (2019). Transfer of calibration in virtual reality to both real and virtual environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 1943–1947. https://doi.org/10.1177/1071181319631224

    Article  Google Scholar 

  45. van Andel, S., Cole, M. H., & Pepping, G. J. (2017). A systematic review on perceptual-motor calibration to changes in action capabilities. Human Movement Science, 51, 59–71. https://doi.org/10.1016/j.humov.2016.11.004

    Article  PubMed  Google Scholar 

  46. Van der Leeden, R., & Busing, F. M. T. A. (1994). First iteration versus IGLS/RIGLS estimates in two-level models: A Monte Carlo study with ML3. Preprint PRM, 94(03).

  47. Walter, H. J., Peterson, N., Li, R., Wagman, J. B., & Stoffregen, T. A. (2019). Sensitivity to changes in dynamic affordances for walking on land and at sea. PLOS ONE, 14(10), e0221974.

    Article  Google Scholar 

  48. Warren, W. H. (1988). Action modes and laws of control for the visual guidance of action. In Advances in Psychology (Vol. 50, pp. 339–379). Elsevier. https://doi.org/10.1016/S0166-4115(08)62564-9

  49. Warren, W. H. (1990). The perception-action coupling. In H. Bloch & B. I. Bertenthal (Eds.), Sensory-Motor Organizations and Development in Infancy and Early Childhood (pp. 23–37). Heidelberg, Germany: Springer Netherlands. https://doi.org/10.1007/978-94-009-2071-2_2

    Google Scholar 

  50. Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20, 201-206.

    Article  Google Scholar 

  51. Witt, J. K., Proffitt, D. R., & Epstein, W. (2010). When and how are spatial perceptions scaled? Journal of Experimental Psychology: Human Perceptionand Performance, 36, 1153–1160. https://doi.org/10.1037/a0019947

    Article  Google Scholar 

  52. Woltman, H., Feldstain, A., MacKay, J. C., & Rocchi, M. (2012). An introduction to hierarchical linear modeling. Tutorials in Quantitative Methods for Psychology, 8(1), 52–69. https://doi.org/10.20982/tqmp.08.1.p052

    Article  Google Scholar 

  53. Ziemer, C. J., Branson, M. J., Chihak, B. J., Kearney, J. K., Cremer, J. F., & Plumert, J. M. (2013). Manipulating perception versus action in recalibration tasks. Attention, Perception, & Psychophysics, 75(6), 1260–1274. https://doi.org/10.3758/s13414-013-0473-6

    Article  Google Scholar 

Download references

Acknowledgements

Preliminary findings from Experiment 1 were presented at the 2019 Annual Meeting of the Human Factors and Ergonomics Society, Seattle, WA (Solini, Bhargava, & Pagano, 2019).

Open practices statement

The data for these experiments can be obtained from the first author. Email: hsolini@g.clemson.edu. None of the experiments was preregistered.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hannah M. Solini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solini, H.M., Bhargava, A. & Pagano, C.C. The effects of testing environment, experimental design, and ankle loading on calibration to perturbed optic flow during locomotion. Atten Percept Psychophys 83, 497–511 (2021). https://doi.org/10.3758/s13414-020-02200-1

Download citation

Keywords

  • Perception and action
  • Goal-directed movements
  • Adaptation and after effects