Visual and verbal working memory loads interfere with scene-viewing

Abstract

Working memory is thought to be divided into distinct visual and verbal subsystems. Studies of visual working memory frequently use verbal working memory tasks as control conditions and/or use articulatory suppression to ensure that visual load is not transferred to verbal working memory. Using these verbal tasks relies on the assumption that the verbal working memory load will not interfere with the same processes as visual working memory. In the present study, participants maintained a visual or verbal working memory load as they simultaneously viewed scenes while their eye movements were recorded. Because eye movements and visual working memory are closely linked, we anticipated the visual load would interfere with scene-viewing (and vice versa), while the verbal load would not. Surprisingly, both visual and verbal memory loads interfered with scene-viewing behavior, while eye movements during scene-viewing did not significantly interfere with performance on either memory task. These results suggest that a verbal working memory load can interfere with eye movements in a visual task.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135, 298–313. doi:https://doi.org/10.1037/0096-3445.135.2.298

    Article  Google Scholar 

  2. Anliker, L. (1976). Eye movements: On-line measurement, analysis, and control. In R. A. Monty & J. W. Senders (Eds.), Eye movements and psychological processes (pp. 185–199). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  3. Baddeley, A. D. (1986). Working memory. Oxford, England: Clarendon.

    Google Scholar 

  4. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation Vol. 8, 47–90. New York, NY: Academic Press.

    Google Scholar 

  5. Bae, G.-Y., & Luck, S. J. (2018). What happens to an individual visual working memory representation when it is interrupted? British Journal of Psychology, 110, 268–287. doi:https://doi.org/10.1111/bjop.12339

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bahle, B., Beck, V. M., & Hollingworth, A. (2018). The architecture of interaction between visual working memory and visual attention. Journal of Experimental Psychology: Human Perception and Performance, 44, 992–1011.

    PubMed  Google Scholar 

  7. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. doi:https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  8. Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. doi:https://doi.org/10.5334/joc.10

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buetti, S., & Lleras, A. (2016). Distractibility is a function of engagement, not task difficulty: Evidence from a new oculomotor capture paradigm. Journal of Experimental Psychology: General, 145(10), 1382–1405. doi:https://doi.org/10.1037/xge0000213

    Article  Google Scholar 

  10. Castelhano, M. S., Mack, M., & Henderson, J. M. (2009). Viewing task influences eye movement control during active scene perception. Journal of Vision, 9(3):6.1–15.

    Article  Google Scholar 

  11. R Core Team. (2019). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

  12. Cronin, D. A., & Irwin, D. E. (2018). Visual working memory supports perceptual stability across saccadic eye movements. Journal of Experimental Psychology: Human Perception and Performance, 44(11), 1739–1759. doi:https://doi.org/10.1037/xhp0000567

    Article  PubMed  Google Scholar 

  13. de Fockert, J. W. (2013). Beyond perceptual load and dilution: A review of the role of working memory in selective attention. Frontiers in Psychology, 4(287), 1–12.

    Google Scholar 

  14. Fougnie, D., & Marois, R. (2007). Executive working memory load induces inattentional blindness. Psychonomic Bulletin & Review, 14(1), 142–147.

    Article  Google Scholar 

  15. Hardman, K. O., Vergauwe, E., & Ricker, T. J. (2017). Categorical working memory representations are used in delayed estimation of continuous colors. Journal of Experimental Psychology: Human Perception and Performance, 43, 30–54. doi:https://doi.org/10.1037/xhp0000290

    Article  PubMed  Google Scholar 

  16. Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory in the control of gaze during visual search. Attention, Perception, & Psychophysics, 71(4), 936–949. doi:https://doi.org/10.3758/APP.71.4.936

    Article  Google Scholar 

  17. Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137, 163–181.

    Article  Google Scholar 

  18. Irwin, D. E. (1992a). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 307–317.

    Google Scholar 

  19. Irwin, D. E. (1992b). Perceiving an integrated visual world. In D. E. Meyer & S. Kornblum (Eds.), Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 121–142). Cambridge, MA: MIT Press.

    Google Scholar 

  20. Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external processes. Psychonomic Bulletin & Review, 20(2), 228–242. doi:https://doi.org/10.3758/s13423-012-0359-y

    Article  Google Scholar 

  21. Lavie, N., & de Fockert, J.W. (2005). The role of working memory in attentional capture. Psychonomic Bulletin & Review, 12, 669–674. doi:https://doi.org/10.3758/BF03196756

    Article  Google Scholar 

  22. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339–354. doi:https://doi.org/10.1037/0096-3445.133.3.339

    Article  Google Scholar 

  23. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279– 281. doi:https://doi.org/10.1038/36846

    Article  Google Scholar 

  24. Mack, A. & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.

    Google Scholar 

  25. Makovski, T., Shim, W. M., & Jiang, Y. V. (2006). Interference from filled delays on visual change detection. Journal of Vision, 6, 1459–1470. doi:https://doi.org/10.1167/6.12.11

    Article  PubMed  Google Scholar 

  26. Menneer, T., Cave, K.R., Kaplan, E., Stroud, M.J., Chang, J., & Donnelly, N. (2019). The relationship between working memory and the dual-target cost in visual search guidance. Journal of Experimental Psychology: Human Perception and Performance, 45(7), 911–935. doi:https://doi.org/10.1037/xhp0000643

    Article  PubMed  Google Scholar 

  27. Morey, C. C., & Bieler, M. (2013). Visual short-term memory always requires general attention. Psychonomic Bulletin & Review, 20, 163–170. doi:https://doi.org/10.3758/s13423-012-0313-z

    Article  Google Scholar 

  28. Morey, C. C., & Cowan, N. (2004). When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin & Review, 11(2), 296–301. doi:https://doi.org/10.3758/BF03196573

    Article  Google Scholar 

  29. Most, S. B., Simons, D. J., Scholl, B. J., Jimenez, R., Clifford, E., & Chabris, C. H. (2001). How not to be seen: The contribution of similarity and selective ignoring to sustained inattentional blindness. Psychological Science, 12(1), 9–17.

    Article  Google Scholar 

  30. Neisser, U. (1979). The control of information pickup in selective looking. In A. D. Pick (Ed.), Perception and its development: A tribute to Eleanor J Gibson (pp. 201–219). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  31. Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually specified events. Cognitive Psychology, 7, 480–494. doi:https://doi.org/10.1016/0010-0285(75)90019-5

    Article  Google Scholar 

  32. Peterson, D. J., Decker, R., & Naveh-Benjamin, M. (2019). Further studies on the role of attention and stimulus repetition in item–item binding processes in visual working memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 45(1), 56–70. doi:https://doi.org/10.1037/xlm0000577

    Article  Google Scholar 

  33. Ricker, T. J., Cowan, N., & Morey, C. C. (2010). Visual working memory is disrupted by covert verbal retrieval. Psychonomic Bulletin & Review, 17, 516–521. doi:https://doi.org/10.3758/PBR.17.4.516

    Article  Google Scholar 

  34. Saults, J. S., & Cowan, N. (2007). A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory. Journal of Experimental Psychology: General, 136, 663–684. doi:https://doi.org/10.1037/0096-3445.136.4.663

    Article  Google Scholar 

  35. Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754–763.

    Article  Google Scholar 

  36. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 1059–1074.

    Article  Google Scholar 

  37. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11–20.

    Article  Google Scholar 

  38. Soto, D., & Humphreys, G. W. (2007). Automatic guidance of visual attention from verbal working memory. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 730–757. doi:https://doi.org/10.1037/0096-1523.33.3.730

    Article  PubMed  Google Scholar 

  39. Soto, D., & Humphreys, G. W. (2008). Stressing the mind: The effect of cognitive load and articulatory suppression on attentional guidance from working memory. Perception & Psychophysics, 70(5), 924–934.

    Article  Google Scholar 

  40. Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42, 1121–1138.

    PubMed  Google Scholar 

  41. Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. Journal of Neuroscience, 33(19), 8257–8263. doi:https://doi.org/10.1523/JNEUROSCI.5348-12.2013

    Article  PubMed  Google Scholar 

  42. Vergauwe, E., Barroillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21(3), 384–390. doi:https://doi.org/10.1177/0956797610361340

    Article  PubMed  Google Scholar 

  43. Westfall, J., Kenny, D. A., & Judd, C. M. (2014). Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli. Journal of Experimental Psychology: General, 143(5), 2020–2045. doi:https://doi.org/10.1037/xge0000014

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

C.E.P. designed the study. C.E.P. and D.A.C. conducted all analyses. D.A.C. wrote the manuscript. C.E.P. and D.A.C. designed the figures. J.M.H. and C.E.P. edited the manuscript. All authors approved the final version. We thank Conner McDaniels, Praveena Singh, and Jocelyn Huerta for assisting in data collection.

Corresponding author

Correspondence to Deborah A. Cronin.

Ethics declarations

Open practices statement

Data and materials for this experiment are available upon request. This study was not preregistered.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by a grant from the National Eye Institute of the National Institutes of Health under award number R01EY027792. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cronin, D.A., Peacock, C.E. & Henderson, J.M. Visual and verbal working memory loads interfere with scene-viewing. Atten Percept Psychophys (2020). https://doi.org/10.3758/s13414-020-02076-1

Download citation

Keywords

  • Eye movements
  • Scene-viewing
  • Visual working memory
  • Verbal working memory
  • Attention