Object-based attention generalizes to multisurface objects

Abstract

When a part of an object is cued, targets presented in other locations on the same object are detected more rapidly and accurately than are targets on other objects. Often in object-based attention experiments, cues and targets appear not only on the same object but also on the same surface. In four psychophysical experiments, we examined whether the “object” of attentional selection was the entire object or one of its surfaces. In Experiment 1, facilitation effects were found for targets on uncued, adjacent surfaces on the same object, even when the cued and uncued surfaces were oriented differently in depth. This suggests that the “object-based” benefits of attention are not restricted to individual surfaces. Experiments 2a and 2b examined the interaction of perceptual grouping and object-based attention. In both experiments, cuing benefits extended across objects when the surfaces of those objects could be grouped, but the effects were not as strong as in Experiment 1, where the surfaces belonged to the same object. The cuing effect was strengthened in Experiment 3 by connecting the cued and target surfaces with an intermediate surface, making them appear to all belong to the same object. Together, the experiments suggest that the objects of attention do not necessarily map onto discrete physical objects defined by bounded surfaces. Instead, attentional selection can be allocated to perceptual groups of surfaces and objects in the same way as it can to a location or to groups of features that define a single object.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Albrecht, A. R., List, A., & Robertson, L. C. (2008). Attentional selection and the representation of holes and objects. Journal of Vision, 8(13), 1–8. doi:https://doi.org/10.1167/8.13.8

    Article  PubMed  Google Scholar 

  2. Atchley, P., & Kramer, A. F. (2001). Object and space-based attentional selection in three-dimensional space. Visual Cognition, 8(1), 1–32. doi:https://doi.org/10.1080/13506280042000009

    Article  Google Scholar 

  3. Avrahami, J. (1999). Object of attention, objects of perception. Perception & Psychophysics, 61, 1604–1612. doi:https://doi.org/10.3758/bf03213121

    Article  Google Scholar 

  4. Behrmann, M., Zemel, R. S., & Mozer, M. C. (1998). Object-based attention and occlusion: Evidence from normal participants and a computational model. Journal of Experimental Psychology: Human Perception and Performance, 24(4), 1011–1036. doi:https://doi.org/10.1037//0096-1523.24.4.1011

    Article  PubMed  Google Scholar 

  5. Ben-Shahar, O., Scholl, B. J., & Zucker, S. W. (2007). Attention, segregation, and textons: Bridging the gap between object-based attention and texton-based segregation. Vision Research, 47(6), 845–860. doi:https://doi.org/10.1016/j.visres.2006.10.019

    Article  PubMed  Google Scholar 

  6. Bourke, P. A., Partridge, H., & Pollux, P. M. (2006). Additive effects of inhibiting attention to objects and locations in three-dimensional displays. Visual Cognition, 13(5), 643–654. doi:https://doi.org/10.1080/13506280544000309

    Article  Google Scholar 

  7. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.

    Article  Google Scholar 

  8. Brown, J. M., Weisstein, N., & May, J. G. (1992). Visual search for simple volumetric shapes. Perception & Psychophysics, 51(1), 40–48.

    Article  Google Scholar 

  9. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. doi:https://doi.org/10.1016/j.visres.2011.04.012

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cave, K. R., & Bichot, N. P. (1999). Visuospatial attention: Beyond a spotlight model. Psychonomic Bulletin & Review, 6(2), 204–223. doi:https://doi.org/10.3758/bf03212327

    Article  Google Scholar 

  11. Chen, Z. (1998). Switching attention within and between objects: The role of subjective organization. Canadian Journal of Experimental Psychology, 52, 7–16. doi:https://doi.org/10.1037/h0087274

    Article  Google Scholar 

  12. Chen, Z. (2012). Object-based attention: A tutorial review. Attention, Perception, & Psychophysics, 74(5), 784–802. doi:https://doi.org/10.3758/s13414-012-0322-z

    Article  Google Scholar 

  13. Chen, Z., & Cave, K. R. (2008). Object-based attention with endogenous cueing and positional certainty. Perception & Psychophysics, 70(8), 1435–1443. doi:https://doi.org/10.3758/PP.70.8.1435

    Article  Google Scholar 

  14. Chen, Z., & Cave, K. R. (2019). When is object-based attention not based on objects? Journal of Experimental Psychology: Human Perception and Performance, 45(8), 1062–1082. doi:https://doi.org/10.1037/xhp0000657

    Article  PubMed  Google Scholar 

  15. Donnelly, N., Humphreys, G. W., & Riddoch, M. J. (1991). Parallel computation of primitive shape descriptions. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 561–570. doi:https://doi.org/10.1037//0096-1523.17.2.561

    Article  PubMed  Google Scholar 

  16. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517. doi:https://doi.org/10.1037//0096-3445.113.4.501

    Article  Google Scholar 

  17. Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161–177. doi:https://doi.org/10.1037//0096-3445.123.2.161

    Article  Google Scholar 

  18. Enns, J. T., & Rensink, R. A. (1990). Sensitivity to three-dimensional orientation in visual search. Psychological Science, 1(5), 323–326.

    Article  Google Scholar 

  19. Enns, J. T., & Rensink, R. A. (1991). Preattentive recovery of three-dimensional orientation from line drawings. Psychological Review, 98(3), 335–351. doi:https://doi.org/10.1037/0033-295x.98.3.335

    Article  PubMed  Google Scholar 

  20. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & psychophysics, 16(1), 143–149. doi:https://doi.org/10.3758/BF03203267

    Article  Google Scholar 

  21. Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583–597. doi:https://doi.org/10.1037//0096-1523.11.5.583

    Article  PubMed  Google Scholar 

  22. Gibson, B. S., & Egeth, H. (1994). Inhibition of return to object-based and environment-based locations. Perception & Psychophysics, 55(3), 323–339. doi:https://doi.org/10.3758/bf03207603

    Article  Google Scholar 

  23. Haimson, C., & Behrmann, M. (2001). Cued visual attention does not distinguish between occluded and occluding objects. Psychonomic Bulletin & Review, 8(3), 496–503. doi:https://doi.org/10.3758/bf03196184

    Article  Google Scholar 

  24. He, Z. J., & Nakayama, K. (1992). Surfaces versus features in visual search. Nature, 359(6392), 231–233. doi:https://doi.org/10.1038/359231a0

    Article  PubMed  Google Scholar 

  25. He, Z. J., & Nakayama, K. (1995). Visual attention to surfaces in three-dimensional space. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11155–11159. doi:https://doi.org/10.1073/pnas.92.24.11155

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hecht, L. N., & Vecera, S. P. (2007). Attentional selection of complex objects: Joint effects of surface uniformity and part structure. Psychonomic Bulletin & Review, 14(6), 1205–1211. doi:https://doi.org/10.3758/bf03193114

    Article  Google Scholar 

  27. Hollingworth, A., Maxcey-Richard, A. M., & Vecera, S. P. (2012). The spatial distribution of attention within and across objects. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 135–151. doi:https://doi.org/10.1037/a0024463

    Article  PubMed  Google Scholar 

  28. Kahneman, D., & Henick, A. (1981). Perceptual organization and attention. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  29. Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430–431. doi:https://doi.org/10.1038/334430a0

    Article  PubMed  Google Scholar 

  30. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147. doi:https://doi.org/10.1016/S1364-6613(00)01452-2

    Article  PubMed  Google Scholar 

  31. Kovacs, I., & Julesz, B. (1993). A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proceedings of the National Academy of Sciences of the United States of America, 90(16), 7495–7497. doi:https://doi.org/10.1073/pnas.90.16.7495

    Article  PubMed  PubMed Central  Google Scholar 

  32. Law, M. B., & Abrams, R. A. (2002). Object-based selection within and beyond the focus of spatial attention. Perception & Psychophysics, 64(7), 1017–1027. doi:https://doi.org/10.3758/bf03194753

    Article  Google Scholar 

  33. Leek, E. C., Reppa, I., & Tipper, S. P. (2003). Inhibition of return for objects and locations in static displays. Perception & Psychophysics, 65(3), 388–395. doi:https://doi.org/10.3758/bf03194570

    Article  Google Scholar 

  34. Marino, A. C., & Scholl, B. J. (2005). The role of closure in defining the “objects” of object-based attention. Perception & Psychophysics, 67(7), 1140–1149. doi:https://doi.org/10.3758/bf03193547

    Article  Google Scholar 

  35. Marrara, M. T., & Moore, C. M. (2003). Object-based selection in the two-rectangles method is not an artifact of the three-sided directional cue. Perception & Psychophysics, 65(7), 1103–1109. doi:https://doi.org/10.3758/bf03194837

    Article  Google Scholar 

  36. Matsukura, M., & Vecera, S. P. (2006). The return of object-based attention: Selection of multiple-region objects. Perception & Psychophysics, 68(7), 1163–1175. doi:https://doi.org/10.3758/bf03193718

    Article  Google Scholar 

  37. Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322. doi:https://doi.org/10.1016/j.tins.2006.04.001

    Article  PubMed  Google Scholar 

  38. Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology: Human Perception and Performance, 11, 777–787. doi:https://doi.org/10.1037//0096-1523.11.6.777

    Article  PubMed  Google Scholar 

  39. Moore, C. M., Yantis, S., & Vaughan, B. (1998). Object-based visual selection: Evidence from perceptual completion. Psychological science, 9(2), 104–110. doi:https://doi.org/10.1111/1467-9280.00019

    Article  Google Scholar 

  40. Müller, H. J., & O’Grady, R. B. (2009). Object-based selection operating on a spatial representation made salient by dimensional segmentation mechanisms: A re-investigation of Egly and Homa (1984). Psychological Research, 73(2), 271–286. doi:https://doi.org/10.1007/s00426-008-0213-z

    Article  PubMed  Google Scholar 

  41. Pelli, D. G. (1997). The video toolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  Google Scholar 

  42. Pomerantz, J. R., & Pristach, E. A. (1989). Emergent features, attention, and perceptual glue in visual form perception. Journal of Experimental Psychology: Human Perception and Performance, 15(4), 635. doi:https://doi.org/10.1037/0096-1523.15.4.635

    Article  PubMed  Google Scholar 

  43. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. doi:https://doi.org/10.1080/17470218.2014.937446

    Article  PubMed  Google Scholar 

  44. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  45. Posner, M. I., Rafal, R.D., Choate, L. S., &Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211–228. doi:https://doi.org/10.1080/02643298508252866

    Article  Google Scholar 

  46. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174. doi:https://doi.org/10.1037/0096-3445.109.2.160

    Article  Google Scholar 

  47. Possin, K. L., Filoteo, J. V., Song, D. D., & Salmon, D. P. (2009). Space-based but not object-based inhibition of return is impaired in Parkinson's disease. Neuropsychologia, 47(7), 1694–1700. doi:https://doi.org/10.1016/j.neuropsychologia.2009.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reppa, I., Fougnie, D., & Schmidt, W. C. (2010). How does attention spread across objects oriented in depth?. Attention, Perception, & Psychophysics, 72(4), 912–925. doi:https://doi.org/10.3758/APP.72.4.912

    Article  Google Scholar 

  49. Reppa, I., & Leek, E. C. (2003). The modulation of inhibition of return by object internal structure: Implications for theories of object-based attentional selection. Psychonomic Bulletin & Review, 10(2), 493–502. doi:https://doi.org/10.3758/BF03196512

    Article  Google Scholar 

  50. Reppa, I., & Leek, E. C. (2006). Structure-based modulation of inhibition of return is triggered by object-internal but not occluding shape features. Quarterly Journal of Experimental Psychology, 59(11), 1857-1866. doi:https://doi.org/10.1080/17470210600872113

    Article  Google Scholar 

  51. Reppa, I., Schmidt, W. C., & Leek, E. C. (2012). Successes and failures in producing attentional object-based cueing effects. Attention, Perception, & Psychophysics, 74(1), 43–69. doi:https://doi.org/10.3758/s13414-011-0211-x

    Article  Google Scholar 

  52. Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1/2), 1–46. doi:https://doi.org/10.1016/S0010-0277(00)00152-9

    Article  PubMed  Google Scholar 

  53. Theeuwes, J. (2013). Feature-based attention: It is all bottom-up priming. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1628), 20130055. doi:https://doi.org/10.1098/rstb.2013.0055

    Article  PubMed  Google Scholar 

  54. Theeuwes, J., & Pratt, J. (2003). Inhibition of return spreads across 3-D space. Psychonomic Bulletin & Review, 10(3), 616–620. doi:https://doi.org/10.3758/BF03196523

    Article  Google Scholar 

  55. Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance, 8(2), 194–214. doi:https://doi.org/10.1037//0096-1523.8.2.194

    Article  PubMed  Google Scholar 

  56. Treisman, A., Kahneman, D., & Burkell, J. (1983). Perceptual objects and the cost of filtering. Perception & Psychophysics, 33(6), 527–532. doi:https://doi.org/10.3758/BF03202934

    Article  Google Scholar 

  57. Umiltà, C., Castiello, U., Fontana, M., & Vestri, A. (1995). Object-centred orienting of attention. Visual Cognition, 2(2/3), 165–181. doi:https://doi.org/10.1080/13506289508401729

    Article  Google Scholar 

  58. Vecera, S. P., Behrmann, M., & Filapek, J. C. (2001). Attending to the parts of a single object: Part-based selection limitations. Perception & Psychophysics, 63(2), 308–321. doi:https://doi.org/10.3758/bf03194471

    Article  Google Scholar 

  59. Vecera, S. P., Behrmann, M., & McGoldrick, J. (2000). Selective attention to the parts of an object. Psychonomic Bulletin & Review, 7(2), 301–308. doi:https://doi.org/10.3758/BF03212985

    Article  Google Scholar 

  60. Watson, S. E., & Kramer, A. F. (1999). Object-based visual selective attention and perceptual organization. Perception & Psychophysics, 61(1), 31–49. doi:https://doi.org/10.3758/bf03211947

    Article  Google Scholar 

  61. Zhang, X., Huang, J., Yigit-Elliott, S., & Rosenholtz, R. (2015). Cube search, revisited. Journal of Vision, 15(3), 9–9. doi:https://doi.org/10.1167/15.3.9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Rebecca Morman, Gabriel Foster, and David Harvey for their assistance in collecting the control experiment data. This research was supported by an EPSCoR Research Infrastructure award from the National Science Foundation to G.P.C. under Award Number 1632738.

Open practices statement

The data and all materials for all experiments is available via the Open Science Framework.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gennady Erlikhman.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8.77 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erlikhman, G., Lytchenko, T., Heller, N.H. et al. Object-based attention generalizes to multisurface objects. Atten Percept Psychophys 82, 1599–1612 (2020). https://doi.org/10.3758/s13414-019-01964-5

Download citation

Keywords

  • Object-based attention
  • Cue facilitation
  • Attention spreading