Shape specificity of neural persistence for the kinetic-depth effect matches perceptual adaptation but not sensory memory

Abstract

When multistable displays—stimuli that are compatible with several comparably likely perceptual interpretations—are presented intermittently, the perceptual state at the stimulus onset shows a complex dependence on the duration of the preceding blank interval. Specifically, perception is maximally destabilized for interruptions that are approximately 500 ms long, but it is stabilized by the use of shorter or longer blank intervals. This nonmonotonic dependence of perceptual stability on the blank interval duration raises questions about a number of history effects that are involved and about their nature, including the underlying neural representations. One way to characterize history effects is by looking at their specificity to the change of display properties. Here we measured the shape specificity for perception of the kinetic-depth effect when interruptions were brief (50 ms). For this time interval, perception is thought to be stabilized by neural persistence, a lingering trace of the prior neural activity. We found that perceptual stability depended on the shapes of the objects presented both before and after the break, but not on the similarity between the objects. These results matched earlier reports of the shape specificity of neural adaptation (destabilizing aftereffect for blanks 200–800 ms long). However, our results were markedly different from the shape specificity of sensory memory of multistable perception (a stabilizing effect for blanks > 800–1,000 ms). We concluded that whereas neural persistence and adaptation both act on the same motion-selective neural representation, sensory memory depends on another, possibly partially overlapping, shape-selective neural ensemble.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barton, K. (2019). MuMIn: Multi-Model Inference. Retrieved from https://cran.r-project.org/package=MuMIn

  2. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi:https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  3. Blake, Sobel, & Gilroy (2003). Visual motion retards alternations between conflicting perceptual interpretations. Neuron, 39, 869–878. doi:https://doi.org/10.1016/S0896-6273(03)00495-1

  4. Brascamp, J. W., Knapen, T. H. J., Kanai, R., Noest, A. J., van Ee, R., & van den Berg, A. V. (2008). Multi-timescale perceptual history resolves visual ambiguity. PLoS ONE, 3, e1497. doi:https://doi.org/10.1371/journal.pone.0001497

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brascamp, J. W., Knapen, T. H. J., Kanai, R., van Ee, R., & van den Berg, A. V. (2007). Flash suppression and flash facilitation in binocular rivalry. Journal of Vision, 7(12), 1–12. doi:https://doi.org/10.1167/7.12.12

    Article  PubMed  Google Scholar 

  6. Brouwer, G. J., & van Ee, R. (2007). Visual cortex allows prediction of perceptual states during ambiguous structure-from-motion. Journal of Neuroscience, 27, 1015–1023. doi:https://doi.org/10.1523/JNEUROSCI.4593-06.2007

    Article  PubMed  Google Scholar 

  7. Clifford, C. W. G., Webster, M. A., Stanley, G. B., Stocker, A. A., Kohn, A., Sharpee, T. O., & Schwartz, O. (2007). Visual adaptation: Neural, psychological and computational aspects. Vision Research, 47, 3125–3131. doi:https://doi.org/10.1016/j.visres.2007.08.023

    Article  PubMed  Google Scholar 

  8. Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics, 27, 183–228. doi:https://doi.org/10.3758/BF03204258

    Article  Google Scholar 

  9. de Jong, M. C., Knapen, T. H. J., & van Ee, R. (2012). Opposite influence of perceptual memory on initial and prolonged perception of sensory ambiguity. PLoS ONE, 7, e30595. doi:https://doi.org/10.1371/journal.pone.0030595

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dodd, J. V, Krug, K., Cumming, B. G., & Parker, A. J. (2001). Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. Journal of Neuroscience, 21, 4809–4821. doi:https://doi.org/10.1523/JNEUROSCI.21-13-04809.2001

    Article  PubMed  Google Scholar 

  11. Eriksen, C. W., & Collins, J. F. (1967). Some temporal characteristics of visual pattern perception. Journal of Experimental Psychology, 74, 476–484. doi:https://doi.org/10.1037/h0024765

    Article  PubMed  Google Scholar 

  12. Ferber, S., Humphrey, G. K., & Vilis, T. (2003). The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. Cerebral Cortex, 13, 716–721. doi:https://doi.org/10.1093/cercor/13.7.716

    Article  PubMed  Google Scholar 

  13. Hupé, J.-M., & Rubin, N. (2003). The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids. Vision Research, 43, 531–548. doi:https://doi.org/10.1016/S0042-6989(02)00593-X

    Article  PubMed  Google Scholar 

  14. Irwin, D. E., & Thomas, L. E. (2008). Visual sensory memory. In S. J. Luck & A. R. Hollingworth (Eds.), Visual memory (pp. 9–41). New York, NY: Oxford University Press.

    Google Scholar 

  15. Jiang, X., Jiang, Y., & Parasuraman, R. (2014). What you see depends on what you saw, and what else you saw: The interactions between motion priming and object priming. Vision Research, 105, 77–85. doi:https://doi.org/10.1016/j.visres.2014.08.023

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klink, P. C., van Ee, R., Nijs, M. M., Brouwer, G. J., Noest, A. J., & van Wezel, R. J. A. (2008). Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 8(5), 16:1–18. doi:https://doi.org/10.1167/8.5.16

    Article  PubMed  Google Scholar 

  17. Knapen, T. H. J., Brascamp, J. W., Adams, W. J., & Graf, E. W. (2009). The spatial scale of perceptual memory in ambiguous figure perception. Journal of Vision, 9(13), 16:1–12. https://doi.org/10.1167/9.13.16

    Article  Google Scholar 

  18. Kornmeier, J., & Bach, M. (2004). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41, 1–8. doi:https://doi.org/10.1046/j.1469-8986.2003.00126.x

    Article  PubMed  Google Scholar 

  19. Leopold, D. A., & Logothetis, N. K. N. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264. doi:https://doi.org/10.1016/S1364-661301332-7

    Article  PubMed  Google Scholar 

  20. Leopold, D. A., Wilke, M., Maier, A., & Logothetis, N. K. (2002). Stable perception of visually ambiguous patterns. Nature Neuroscience, 5, 605–609. doi:https://doi.org/10.1038/nn851

    Article  PubMed  Google Scholar 

  21. Loftus, G. R., & Irwin, D. E. (1998). On the relations among different measures of visible and informational persistence. Cognitive Psychology, 35, 135–199. doi:https://doi.org/10.1006/cogp.1998.0678

    Article  PubMed  Google Scholar 

  22. Maier, A., Wilke, M., Logothetis, N. K., & Leopold, D. A. (2003). Perception of temporally interleaved ambiguous patterns. Current Biology, 13, 1076–1085. doi:https://doi.org/10.1016/S0960-982200414-7

    Article  PubMed  Google Scholar 

  23. McRae, K., Butler, B. E., & Popiel, S. J. (1987). Spatiotopic and retinotopic components of iconic memory. Psychological Research, 49, 221–227. doi:https://doi.org/10.1007/BF00309030

    Article  PubMed  Google Scholar 

  24. Morey, R. D., & Rouder, J. N. (2012). Advanced statistical methods for the analysis of large data-sets. In A. Di Ciaccio, M. Coli, & J. M. Angulo Ibanez (Eds.), BayesFactor: Computation of Bayes factors for common designs. Berlin, Germany: Springer. doi:https://doi.org/10.1007/978-3-642-21037-2

    Google Scholar 

  25. Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R. J. A. (2007). Percept-choice sequences driven by interrupted ambiguous stimuli: a low-level neural model. Journal of Vision, 7(8), 10. doi:https://doi.org/10.1167/7.8.10

    Article  PubMed  Google Scholar 

  26. O’Shea, R. P., & Crassini, B. (1984). Binocular rivalry occurs without simultaneous presentation of rival stimuli. Perception & Psychophysics, 36, 266–276. doi:https://doi.org/10.3758/BF03206368

    Article  Google Scholar 

  27. Orban, G. A. (2011). The extraction of 3D shape in the visual system of human and nonhuman primates. Annual Review of Neuroscience, 34, 361–388. doi:https://doi.org/10.1146/annurev-neuro-061010-113819

    Article  PubMed  Google Scholar 

  28. Pastukhov, A. (2016). Perception and the strongest sensory memory trace of multi-stable displays both form shortly after the stimulus onset. Attention, Perception, & Psychophysics, 78, 674–684. doi:https://doi.org/10.3758/s13414-015-1004-4

    Article  Google Scholar 

  29. Pastukhov, A., & Braun, J. (2008). A short-term memory of multi-stable perception. Journal of Vision, 8(13), 7. doi:https://doi.org/10.1167/8.13.7

    Article  PubMed  Google Scholar 

  30. Pastukhov, A., Füllekrug, J., & Braun, J. (2013). Sensory memory of structure-from-motion is shape-specific. Attention, Perception, & Psychophysics, 75, 1215–1229. doi:https://doi.org/10.3758/s13414-013-0471-8

    Article  Google Scholar 

  31. Pastukhov, A., Lissner, A., & Braun, J. (2014). Perceptual adaptation to structure-from-motion depends on the size of adaptor and probe objects, but not on the similarity of their shapes. Attention, Perception, & Psychophysics, 76, 473–488. doi:https://doi.org/10.3758/s13414-013-0567-1

    Article  Google Scholar 

  32. Pastukhov, A., Prasch, J., & Carbon, C.-C. (2018). Out of sight, out of mind: Occlusion and eye closure destabilize moving bistable structure-from-motion displays. Attention, Perception, & Psychophysics, 80, 1193–1204. doi:https://doi.org/10.3758/s13414-018-1505-z

    Article  Google Scholar 

  33. Pearson, J., & Clifford, C. G. W. (2004). Determinants of visual awareness following interruptions during rivalry. Journal of Vision, 4, 196–202. https://doi.org/10:1167/4.3.6

  34. Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., . . . Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51, 195–203. doi:https://doi.org/10.3758/s13428-018-01193-y

  35. R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria. Retrieved from https://dx.www.r-project.org/

  36. Song, C., & Yao, H. (2009). Duality in binocular rivalry: distinct sensitivity of percept sequence and percept duration to imbalance between monocular stimuli. PLoS ONE, 4, e6912. doi:https://doi.org/10.1371/journal.pone.0006912

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10, 502–511. doi:https://doi.org/10.1016/j.tics.2006.09.003

    Article  PubMed  Google Scholar 

  38. van Boxtel, J. J. A., Alais, D., Erkelens, C. J., & van Ee, R. (2008). The role of temporally coarse form processing during binocular rivalry. PLoS ONE, 3, e1429. doi:https://doi.org/10.1371/journal.pone.0001429

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J. T., & Orban, G. A. (2002). Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science, 298, 413–415. doi:https://doi.org/10.1126/science.1073574

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Pastukhov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 14082 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, A., Burkel, K. & Carbon, C. Shape specificity of neural persistence for the kinetic-depth effect matches perceptual adaptation but not sensory memory. Atten Percept Psychophys 82, 1942–1948 (2020). https://doi.org/10.3758/s13414-019-01954-7

Download citation

Keywords

  • 3-D perception
  • Depth and shape from X
  • Adaptation
  • Aftereffects
  • Binocular vision
  • Rivalry/Bistable perception