Opposite effects of motion dynamics on the Ebbinghaus and corridor illusions

Abstract

We recently showed that motion dynamics greatly enhance the magnitude of certain size contrast illusions, such as the Ebbinghaus and Delboeuf illusions. Here, we extend our study of the effect of motion dynamics on size illusions through a novel dynamic corridor illusion, in which a single target translates along a corridor background. Across three psychophysical experiments, we quantify the effects of stimulus dynamics on the Ebbinghaus and corridor illusions across different viewing conditions. The results revealed that stimulus dynamics had opposite effects on these different classes of size illusions. Whereas dynamic motion enhanced the magnitude of the Ebbinghaus illusion, it attenuated the magnitude the corridor illusion. Our results highlight precision-driven weighting of visual cues by neural circuits computing perceived object size. This hypothesis is consistent with observations beyond size perception and may represent a more general principle of cue integration in the visual system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Angelaki, D. E., Gu, Y., & Deangelis, G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex. The Journal of Physiology, 589(Pt. 4), 825–833. doi:https://doi.org/10.1113/jphysiol.2010.194720

    Article  PubMed  Google Scholar 

  2. Berryhill, M. E., Fendrich, R., & Olson, I. R. (2009). Impaired distance perception and size constancy following bilateral occipitoparietal damage. Experimental Brain Research, 194(3), 381–393. doi:https://doi.org/10.1007/s00221-009-1707-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boring, E. G. (1940). Size constancy and Emmert’s law. The American Journal of Psychology, 53(2), 293–295.

    Article  Google Scholar 

  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.

    Article  Google Scholar 

  5. Chen, J., McManus, M., Valsecchi, M., Harris, L. R., & Gegenfurtner, K. R. (2019). Steady-state visually evoked potentials reveal partial size constancy in early visual cortex. Journal of Vision, 19(6), 8. doi:https://doi.org/10.1167/19.6.8

    Article  PubMed  Google Scholar 

  6. Chen, J., Sperandio, I., Henry, M. J., & Goodale, M. A. (2019). Changing the real viewing distance reveals the temporal evolution of size constancy in visual cortex. Current Biology, 29(13), 2237–2243.e2234. doi:https://doi.org/10.1016/j.cub.2019.05.069

    Article  PubMed  Google Scholar 

  7. Cormack, R. H., Coren, S., & Girgus, J. S. (1979). Seeing is deceiving: The psychology of visual illusions. The American Journal of Psychology. 9(3), 557. doi:https://doi.org/10.2307/1421575

    Article  Google Scholar 

  8. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.

    Article  Google Scholar 

  9. De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving Gabors. Vision Research, 31(9), 1619–1626.

    Article  Google Scholar 

  10. Emmert, E. (1881). Grössenverhältnisse der nachbilder [Size relationships of afterimages]. Klinische Monatsblätter für Augenheilkunde, 19, 443–450.

  11. Fang, F., Boyaci, H., Kersten, D., & Murray, S. O. (2008). Attention-dependent representation of a size illusion in human V1. Current Biology, 18(21), 1707–1712. doi:https://doi.org/10.1016/j.cub.2008.09.025

    Article  PubMed  Google Scholar 

  12. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    Article  Google Scholar 

  13. Fischer, J., & Whitney, D. (2009). Precise discrimination of object position in the human pulvinar. Human Brain Mapping, 30(1), 101-111. doi:https://doi.org/10.1002/hbm.20485

    Article  PubMed  Google Scholar 

  14. Grzeczkowski, L., Clarke, A. M., Francis, G., Mast, F. W., & Herzog, M. H. (2017). About individual differences in vision. Vision Research, 141, 282–292. doi:https://doi.org/10.1016/j.visres.2016.10.006

    Article  PubMed  Google Scholar 

  15. He, D., Mo, C., Wang, Y., & Fang, F. (2015). Position shifts of fMRI-based population receptive fields in human visual cortex induced by Ponzo illusion. Experimental Brain Research, 233(12), 3535–3541. doi:https://doi.org/10.1007/s00221-015-4425-3

    Article  PubMed  Google Scholar 

  16. Hillstrom, A. P., & Yantis, S. (1994). Visual motion and attentional capture. Perception & Psychophysics, 55(4), 399–411.

    Article  Google Scholar 

  17. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148, 574–591.

    Article  Google Scholar 

  18. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304. doi:https://doi.org/10.1146/annurev.psych.55.090902.142005

    Article  PubMed  Google Scholar 

  19. Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. doi:https://doi.org/10.1016/j.tins.2004.10.007

    Article  PubMed  Google Scholar 

  20. Kunnapas, T. M. (1955). Influence of frame size on apparent length of a line. Journal of Experimental Psychology: Human Perception and Performance, 50(3), 168–170.

    Article  Google Scholar 

  21. Kwon, O. S., Tadin, D., & Knill, D. C. (2015). Unifying account of visual motion and position perception. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8142–8147. doi:https://doi.org/10.1073/pnas.1500361112

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63(8), 1279–1292.

    Article  Google Scholar 

  23. Leek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures. Perception & Psychophysics, 51(3), 247–256.

    Article  Google Scholar 

  24. Lisi, M., & Cavanagh, P. (2015). Dissociation between the perceptual and saccadic localization of moving objects. Current Biology, 25(19), 2535–2540. doi:https://doi.org/10.1016/j.cub.2015.08.021

    Article  PubMed  Google Scholar 

  25. Liu, Q., Wu, Y., Yang, Q., Campos, J. L., Zhang, Q., & Sun, H. J. (2009). Neural correlates of size illusions: An event-related potential study. NeuroReport, 20(8), 809–814. doi:https://doi.org/10.1097/WNR.0b013e32832be7c0

    Article  PubMed  Google Scholar 

  26. MacEvoy, S. P., & Fitzpatrick, D. (2006). Visual physiology: Perceived size looms large. Current Biology, 16(9), R330–R332. doi:https://doi.org/10.1016/j.cub.2006.03.076

    Article  PubMed  Google Scholar 

  27. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61–64.

    Article  Google Scholar 

  28. Mruczek, R. E. B., Blair, C. D., & Caplovitz, G. P. (2014). Dynamic illusory size contrast: A relative-size illusion modulated by stimulus motion and eye movements. Journal of Vision, 14(3), 2. doi:https://doi.org/10.1167/14.3.2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mruczek, R. E. B., Blair, C. D., Strother, L., & Caplovitz, G. P. (2015). The Dynamic Ebbinghaus: Motion dynamics greatly enhance the classic contextual size illusion. Frontiers in Human Neuroscience, 9, 77. doi:https://doi.org/10.3389/fnhum.2015.00077

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mruczek, R. E. B., Blair, C. D., Strother, L., & Caplovitz, G. P. (2017a). Dynamic Illusory Size Contrast: Enhanced relative size effects due to stimulus motion. In A. Shapiro & D. Todorović (Eds.), The Oxford Compendium of Visual Illusions (pp. 258-261). New York: Oxford University Press.

    Google Scholar 

  31. Mruczek, R. E. B., Blair, C. D., Strother, L., & Caplovitz, G. P. (2017b). Size contrast and assimilation in the Delboeuf and Ebbinghaus illusions. In A. Shaprio & D. Todorović (Eds.), The Oxford compendium of visual illusions (pp. 262–268). New York, NY: Oxford University Press.

    Google Scholar 

  32. Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9(3), 429-434. doi:https://doi.org/10.1038/nn1641

    Article  PubMed  Google Scholar 

  33. Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). Object-centered shifts of receptive field positions in monkey primary visual cortex. Current Biology, 24(14), 1653–1658. doi:https://doi.org/10.1016/j.cub.2014.06.003

    Article  PubMed  Google Scholar 

  34. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.

    Article  Google Scholar 

  35. Ponzo, M. (1911). Intorno ad alcune illusioni nel campo delle sensazioni tattili, sull'illusione di Aristotele e fenomeni analoghi [On some illusions in the field of tactile sensations on the illusion of Aristotle and similar phenomena]. Auchive für die Gesamte Psychologie, 16, 307–345.

  36. Pooresmaeili, A., Arrighi, R., Biagi, L., & Morrone, M. C. (2013). Blood oxygen level-dependent activation of the primary visual cortex predicts size adaptation illusion. Journal of Neuroscience, 33(40), 15999–16008. doi:https://doi.org/10.1523/jneurosci.1770-13.2013

    Article  PubMed  Google Scholar 

  37. Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19(5), 611–616. doi:https://doi.org/10.1068/p190611

    Article  PubMed  Google Scholar 

  38. Roberts, B., Harris, M. G., & Yates, T. A. (2005). The roles of inducer size and distance in the Ebbinghaus illusion (Titchener circles). Perception, 34(7), 847–856. doi:https://doi.org/10.1068/p5273

    Article  PubMed  Google Scholar 

  39. Rock, I., & Ebenholtz, S. (1959). The relational determination of perceived size. Psychol Rev, 66, 387–401.

    Article  Google Scholar 

  40. Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203–227. doi:https://doi.org/10.1146/annurev.neuro.29.051605.112939

    Article  PubMed  Google Scholar 

  41. Schwarzkopf, D. S., Song, C., & Rees, G. (2011). The surface area of human V1 predicts the subjective experience of object size. Nature Neuroscience, 14(1), 28–30. doi:https://doi.org/10.1038/nn.2706

    Article  PubMed  Google Scholar 

  42. Shapiro, A., Lu, Z. L., Huang, C. B., Knight, E., & Ennis, R. (2010). Transitions between central and peripheral vision create spatial/temporal distortions: a hypothesis concerning the perceived break of the curveball. PLoS One, 5(10), e13296. doi:https://doi.org/10.1371/journal.pone.0013296

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shulman, G. L. (1992). Attentional modulation of size contrast. Quarterly Journal of Experimental Psychology: Human Perception and Performance A, 45(4), 529–546.

    Article  Google Scholar 

  44. Song, C., Schwarzkopf, D. S., & Rees, G. (2011). Interocular induction of illusory size perception. BMC Neuroscience, 12(1), 27. doi:https://doi.org/10.1186/1471-2202-12-27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sperandio, I., Chouinard, P. A., & Goodale, M. A. (2012). Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 15(4), 540–542. doi:https://doi.org/10.1038/nn.3069

    Article  PubMed  Google Scholar 

  46. Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8(5), 1531–1568.

    Article  Google Scholar 

  47. Tse, P. U., & Hsieh, P. J. (2006). The infinite regress illusion reveals faulty integration of local and global motion signals. Vision Research, 46(22), 3881–3885. doi:https://doi.org/10.1016/j.visres.2006.06.010

    Article  PubMed  Google Scholar 

  48. von Bezold, W. (1884). Eine perspectivische Täuschung [A perspective deception]. Annalen der Physik, 259(10), 351–352. doi:https://doi.org/10.1002/andp.18842591013

  49. Whitney, D., Goltz, H. C., Thomas, C. G., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Flexible retinotopy: Motion-dependent position coding in the visual cortex. Science, 302(5646), 878–881. doi:https://doi.org/10.1126/science.1087839

    Article  PubMed  Google Scholar 

  50. Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63(8), 1293–1313.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Science Foundation: NSF 1632738 and NSF 1632849.

Open practices statement

Data for all experiments are posted in the Open Science Framework (https://osf.io/jwd6q/?view_only=e94d716f541d4eb2b30a13977911c44a). None of the experiments was preregistered.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan E. B. Mruczek.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mruczek, R.E.B., Blair, C.D., Cullen, K. et al. Opposite effects of motion dynamics on the Ebbinghaus and corridor illusions. Atten Percept Psychophys 82, 1912–1927 (2020). https://doi.org/10.3758/s13414-019-01927-w

Download citation

Keywords

  • Visual perception
  • Perceptual organization
  • Bayesian modeling