The strength of the Shepard illusion in children coincides with age and cognitive skills but not perceptual abilities

Abstract

We examined how the strength of the Shepard illusion develops with age in typically developing children. To this end, we recruited children between the ages of 6 and 14 years and quantified the degree to which they experienced the illusion. The strength of the illusion increased with age – reaching adult levels by 11.5 years. We also measured abilities in size and shape discrimination, receptive language, and abstract reasoning to determine if changes in illusion strength were also associated with these factors. Abilities in size and shape matching increased with age but did not correlate with the strength of the Shepard illusion. Receptive language and abstract reasoning increased with age and correlated with the strength of the Shepard illusion. However, a multiple regression analysis revealed that they did not contribute beyond their shared variance with age. Based on these findings, we propose that the illusion has a strong acquired component to it and requires the maturation of high-level processes before it is experienced to adult levels at preadolescence.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Correlating these normalised scores with the absolute perceived differences between the two parallelograms yielded a strong Pearson correlation coefficient (r(95) = .973, p < .001), validating the use of the normalised scores.

  2. 2.

    The size-weight illusion pertains to the perceptual phenomenon in which the smaller of two equally weighted objects is perceived as heavier (Saccone & Chouinard, 2019).

References

  1. Binet, A. (1895). La mesure des illusions visuelle chez les enfants. Revue Philosophique de la France et de l'Étranger, 40, 11-25.

    Google Scholar 

  2. Brosvic, G. M., Dihoff, R. E., & Fama, J. (2002). Age-related susceptibility to the Muller-Lyer and the horizontal-vertical illusions. Percept Mot Skills, 94(1), 229-234, https://doi.org/10.2466/pms.2002.94.1.229.

    Article  PubMed  Google Scholar 

  3. Chouinard, P. A., Matheson, K. G., Royals, K. A., Landry, O., Buckingham, G., Saccone, E. J., et al. (2019). The development of the size-weight illusion in children coincides with the development of nonverbal cognition rather than motor skills. J Exp Child Psychol, 184, 48-64, https://doi.org/10.1016/j.jecp.2019.03.006.

    Article  PubMed  Google Scholar 

  4. Chouinard, P. A., Noulty, W. A., Sperandio, I., & Landry, O. (2013). Global processing during the Muller-Lyer illusion is distinctively affected by the degree of autistic traits in the typical population. Exp Brain Res, 230(2), 219-231, https://doi.org/10.1007/s00221-013-3646-6.

    Article  PubMed  Google Scholar 

  5. Chouinard, P. A., Peel, H. J., & Landry, O. (2017). Eye-tracking reveals that the strength of the vertical-horizontal illusion increases as the retinal image becomes more stable with fixation. Front Hum Neurosci, 11, 143, https://doi.org/10.3389/fnhum.2017.00143.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chouinard, P. A., Royals, K. A., Landry, O., & Sperandio, I. (2018). The shepard illusion is reduced in children with an autism spectrum disorder because of perceptual rather than attentional mechanisms. Front Psychol, 9, 2452, https://doi.org/10.3389/fpsyg.2018.02452.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chouinard, P. A., Unwin, K. L., Landry, O., & Sperandio, I. (2016). Susceptibility to optical illusions varies as a function of the autism-spectrum quotient but not in ways predicted by local-global biases. J Autism Dev Disord, 46(6), 2224-2239, https://doi.org/10.1007/s10803-016-2753-1.

    Article  PubMed  Google Scholar 

  8. Dresslar, F. B. (1894). Studies in the psychology of touch. American Journal of Psychology, 6, 313-368.

    Article  Google Scholar 

  9. Duffy, S., Huttenlocher, J., & Crawford, L. E. (2006). Children use categories to maximize accuracy in estimation. Dev Sci, 9(6), 597-603, https://doi.org/10.1111/j.1467-7687.2006.00538.x.

    Article  PubMed  Google Scholar 

  10. Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test, Fourth Edition (PPVT™-4). Pearson Education.

  11. Field, A. (2017). Discovering statistics using IBM SPSS statistics (5th ed.). London: Sage Publications Ltd.

    Google Scholar 

  12. Finlayson, N. J., Manser-Smith, K., Balraj, A., de Haas, B., & Schwarzkopf, D. S. (2018). The optimal experimental design for multiple alternatives perceptual search. Atten Percept Psychophys, 80(8), 1962-1973, https://doi.org/10.3758/s13414-018-1568-x.

    Article  PubMed  Google Scholar 

  13. Finlayson, N. J., Papageorgiou, A., & Schwarzkopf, D. S. (2017). A new method for mapping perceptual biases across visual space. J Vis, 17(9), 5, https://doi.org/10.1167/17.9.5.

    Article  PubMed  Google Scholar 

  14. Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for "top-down" effects. Behavioral Brain Science, 39, e229, https://doi.org/10.1017/S0140525X15000965.

    Article  Google Scholar 

  15. Flournoy, T. (1894). De l'influence de la perception visuelle des corps sur leur poids objects. L'année psychologique, 1, 198-208.

    Article  Google Scholar 

  16. Frederickson, W. A., & Geurin, J. (1973). Age difference in perceptual judgment on the Mueller-Lyer illusion. Percept Mot Skills, 36(1), 131-135, https://doi.org/10.2466/pms.1973.36.1.131.

    Article  PubMed  Google Scholar 

  17. Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5(6), 508-510, https://doi.org/10.1038/nn0602-508.

    Article  PubMed  Google Scholar 

  18. Gilbert, J. A. (1894). Researches on the mental and physical development of school-children. Studies from the Yale Psychological Laboratory, 2, 40-100.

    Google Scholar 

  19. Girgus, J. S., & Coren, S. (1987). The interaction between stimulus variations and age trends in the Poggendorff illusion. Percept Psychophys, 41(1), 60-66.

    Article  Google Scholar 

  20. Gregory, R. L. (1980). Perceptions as hypotheses. Philos Trans R Soc Lond B Biol Sci, 290(1038), 181-197.

    Article  Google Scholar 

  21. Gregory, R. L. (2015). Eye and Brain: The Psychology of Seeing (5th Edition ed.): Princeton University Press.

  22. Hanley, C., & Zerbolio, D. J. (1965). Developmental Changes in Five Illusions Measured by the up-and-down Method. Child Dev, 36, 437-452.

    Article  Google Scholar 

  23. Helmholtz, H. v. (1867). (Handbuch der physiologischen Optik). Leipzig, Germany: Voss.

    Google Scholar 

  24. Jogan, M., & Stocker, A. A. (2014). A new two-alternative forced choice method for the unbiased characterization of perceptual bias and discriminability. J Vis, 14(3), 20, https://doi.org/10.1167/14.3.20.

    Article  PubMed  Google Scholar 

  25. Kail, R., Pellegrino, J., & Carter, P. (1980). Developmental changes in mental rotation. J Exp Child Psychol, 29(1), 102-116.

    Article  Google Scholar 

  26. Kosslyn, S. M. (1996). Image and brain: The resolution of the imagery debate. Cambridge, M.A.: MIT Press.

    Google Scholar 

  27. Kosslyn, S. M., Margolis, J. A., Barrett, A. M., Goldknopf, E. J., & Daly, P. F. (1990). Age differences in imagery abilities. Child Dev, 61(4), 995-1010.

    Article  Google Scholar 

  28. Landry, O., Johnson, K. A., Fleming, S. J., Crewther, S. G., & Chouinard, P. A. (2019). A new look at the developmental profile of visual endogenous orienting. J Exp Child Psychol, 183, 158-171, https://doi.org/10.1016/j.jecp.2019.01.022.

    Article  PubMed  Google Scholar 

  29. Leibowitz, H. W., & Gwozdecki, J. (1967). The magnitude of the Poggendorff illusion as a function of age. Child Dev, 38(2), 573-580.

    Article  Google Scholar 

  30. Lutke, N., & Lange-Kuttner, C. (2015). Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT). Int J Dev Sci, 9(2), 95-114, https://doi.org/10.3233/DEV-14154.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mallenby, T. W. (1974). Effect of discussion on reduction of magnitude of Poggendorff illusion. Percept Mot Skills, 39(2), 787-791, https://doi.org/10.2466/pms.1974.39.2.787.

    Article  PubMed  Google Scholar 

  32. Mitchell, P., Mottron, L., Soulieres, I., & Ropar, D. (2010). Susceptibility to the Shepard illusion in participants with autism: reduced top-down influences within perception? Autism Res, 3(3), 113-119, https://doi.org/10.1002/aur.130.

    Article  PubMed  Google Scholar 

  33. Morgan, M. J., Melmoth, D., & Solomon, J. A. (2013). Linking hypotheses underlying Class A and Class B methods. Vis Neurosci, 30(5-6), 197-206, https://doi.org/10.1017/S095252381300045X.

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Qual Quant, 41(5), 673-690, https://doi.org/10.1007/s11135-006-9018-6.

    Article  Google Scholar 

  35. Patten, M. L., & Clifford, C. W. (2015). A bias-free measure of the tilt illusion. J Vis, 15(15), 8, https://doi.org/10.1167/15.15.8.

    Article  PubMed  Google Scholar 

  36. Philippe, J., & Clavière, J. (1895). Sur une illusion musculaire. Revue Philosophique de la France et de l'Étranger, 40, 672-682.

    Google Scholar 

  37. Piaget, J. (1969). The mechanisms of perception (G. N. Seagrim, Trans.). London: Routledge & K. Paul.

    Google Scholar 

  38. Piaget, J. (1999). The Psychology Of Intelligence: Taylor & Francis.

  39. Pollack, R. H. (1970). Mueller-Lyer illusion: effect of age, lightness contrast, and hue. Science, 170(3953), 93-95.

    Article  Google Scholar 

  40. Porac, C., & Coren, S. (1981). Life-span age trends in the perception of the Mueller-Lyer: additional evidence for the existence of two illusions. Can J Psychol, 35(1), 58-62.

    Article  Google Scholar 

  41. Pressey, A. W., & Sweeney, O. (1970). Age changes in the Poggendorff illusion as measured by a method of production. Psychon Sci, 19, 99-100.

    Article  Google Scholar 

  42. Raven, J., Raven, J. C., & Court, J. H. (2003). Manual for Raven's Progressive Matrices and Vocabulary Scales. San Antonio, YX: Harcourt Assessmen.

    Google Scholar 

  43. Rey, A. (1930). Contribution à l'étude de poids chez les anormaux. Archives de psychologie, 22, 285-287.

    Google Scholar 

  44. Saccone, E. J., & Chouinard, P. A. (2019). The influence of size in weight illusions is unique relative to other object features. Psychon Bull Rev, 26(1), 77-89, https://doi.org/10.3758/s13423-018-1519-5.

    Article  PubMed  Google Scholar 

  45. Schwarzkopf, D. S., Song, C., & Rees, G. (2011). The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci, 14(1), 28-30, https://doi.org/10.1038/nn.2706.

    Article  PubMed  Google Scholar 

  46. Shepard, R. N. (1990). Mind sights: Original visual illusions, ambiguities, and other anomalies, with a commentary on the play of mind in perception and art. New York, NY: W.H.Freeman & Co Ltd.

    Google Scholar 

  47. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703.

    Article  Google Scholar 

  48. Sherman, J. A., & Chouinard, P. A. (2016). Attractive Contours of the Ebbinghaus Illusion. Percept Mot Skills, 122(1), 88-95, https://doi.org/10.1177/0031512515626632.

    Article  PubMed  Google Scholar 

  49. Sperandio, I., & Chouinard, P. A. (2015). The mechanisms of size constancy. Multisens Res, 28(3-4), 253-283, https://doi.org/10.1163/22134808-00002483.

    Article  PubMed  Google Scholar 

  50. Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 99-114.

  51. Tyler, C. W. (2011). Paradoxical perception of surfaces in the Shepard tabletop illusion. Iperception, 2(2), 137-141, https://doi.org/10.1068/i0422.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Van der Hallen, R., Evers, K., Brewaeys, K., Van den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local-global visual processing in ASD. Psychol Bull, 141(3), 549-573, https://doi.org/10.1037/bul0000004.

    Article  PubMed  Google Scholar 

  53. Vurpillot, E. (1957). L'influence de la signification du matériel sur l'illusion de Poggendorff. Année psychologique., 57(2), 338-357, https://doi.org/10.3406/psy.1957.26611.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the State of Victoria’s Department of Education and Training, and the primary and secondary schools in Bendigo for allowing us to recruit and test their students. This work was supported by grants from the La Trobe University’s Understanding Disease and Building Healthy Communities Research Focus Areas, and Social Research Assistance Platform.

Open practices statement

The data reported in this paper are available upon request. None of the experiments were preregistered.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe A. Chouinard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chouinard, P.A., Royals, K.A. & Landry, O. The strength of the Shepard illusion in children coincides with age and cognitive skills but not perceptual abilities. Atten Percept Psychophys 82, 1378–1390 (2020). https://doi.org/10.3758/s13414-019-01904-3

Download citation

Keywords

  • Shepard illusion
  • Developmental profile
  • Typically developing children
  • Size perception
  • Shape perception