An analysis of the processing of intramodal and intermodal time intervals

Abstract

In this 3-experiment study, the Weber fractions in the 300-ms and 900-ms duration ranges are obtained with 9 types of empty intervals resulting from the combinations of three types of signals for marking the beginning and end of the signals: auditory (A), visual (V), or tactile (T). There were three types of intramodal intervals (AA, TT, and VV) and 6 types of intermodal intervals (AT, AV, VA, VT, TA, and TV). The second marker is always the same during Experiments 1 (A), 2 (V), and 3 (T). With an uncertainty strategy where the first marker is 1 of 2 sensory signals being presented randomly from trial to trial, the study provides direct comparisons of the perceived length of the different marker-type intervals. The results reveal that the Weber fraction is nearly constant in the three types of intramodal intervals, but is clearly lower at 900 ms than at 300 ms in intermodal conditions. In several cases, the intramodal intervals are perceived as shorter than intermodal intervals, which is interpreted as an effect of the efficiency in detecting the second marker of an intramodal interval. There were no significant differences between the TA and VA intervals (Experiment 1) and between the AV and TV intervals (Experiment 2), but in Experiment 3, the AT intervals were perceived as longer than the VT intervals. The results are interpreted in terms of the generalized form of Weber’s law, using the properties of the signals for explaining the additional nontemporal noise observed in the intermodal conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6

References

  1. Behar, I., & Bevan, W. (1961). The perceived duration of auditory and visual intervals: Cross-modal comparison and interaction. The American Journal of Psychology, 74, 17–26.

    Article  Google Scholar 

  2. Bueti, D. (2011). The sensory representation of time. Frontiers of Integrative Neuroscience, 5. doi:https://doi.org/10.3389/fnint.2011.00034

  3. Block, R. A., & Zakay, D. (2008). Timing and remembering the past, the present, and the future. In S. Grondin (Ed.), Psychology of time (pp. 367–394). Bingley, England: Emerald Group.

    Google Scholar 

  4. Fraisse, P. (1952). La perception de la durée comme organisation du successif. Mise en évidence expérimentale. L'Année Psychologique, 52, 39–46.

    Article  Google Scholar 

  5. Gamache, P.-L., & Grondin, S. (2010). The life span of time intervals in reference memory. Perception, 39, 1431–1451.

    Article  Google Scholar 

  6. Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325.

    Article  Google Scholar 

  7. Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Annals of the New York Academy of Sciences: Vol. 423. Timing and time perception (pp. 52–77). New York: New York Academy of Sciences. doi:https://doi.org/10.1111/j.1749-6632.1984.tb23417.x

    Google Scholar 

  8. Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by response force in divided and focused attention. Journal of Experimental Psychology: Human Perception & Performance, 19, 1278–1291.

    Google Scholar 

  9. Goldstone, S., & Goldfarb, J. L. (1964). Direct comparisons of auditory and visual durations. Journal of Experimental Psychology, 67(5), 483–485.

    Article  Google Scholar 

  10. Goldstone, S., & Lhamon, W. T. (1972). Auditory-visual differences in human temporal judgment. Perceptual and Motor Skills, 34(2), 623–633.

    Article  Google Scholar 

  11. Goldstone, S., & Lhamon, W. T. (1974). Studies of auditory–visual differences in human time judgment: I. Sounds are judged longer than lights. Perceptual & Motor Skills, 39, 63–82.

    Article  Google Scholar 

  12. Gontier, E., Hasuo, E., Mitsudo, T., & Grondin, S. (2013). EEG investigations of duration discrimination: The intermodal effect is induced by an attentional bias. PLOS ONE, 8(8): e74073. doi:https://doi.org/10.1371/journal.pone.0074073.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Perception & Psychophysics, 54, 383–394.

    Article  Google Scholar 

  14. Grondin, S. (2001). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 22–44.

    Article  Google Scholar 

  15. Grondin, S. (2003). Sensory modalities and temporal processing. In H. Helfrich (Ed.), Time and Mind II: Information processing perspectives (pp. 75–92). Ashland, OH: Hogrefe & Huber.

    Google Scholar 

  16. Grondin, S. (2005). Overloading temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 31, 869–879.

    PubMed  Google Scholar 

  17. Grondin, S. (2008). Methods for studying psychological time. In S. Grondin (Ed.), Psychology of time (pp. 51–74). Bingley, England: Emerald Group.

    Google Scholar 

  18. Grondin S. (2010). Unequal Weber fraction for the categorization of brief temporal intervals. Attention, Perception, & Psychophysics, 72, 1422–1430.

    Article  Google Scholar 

  19. Grondin, S. (2014a). About the (non)scalar property for time perception. In H. Merchant & V. de Lafuente (Eds.), Advances in Experimental Medicine and Biology: Vol. 829. Neurobiology of interval timing (pp. 17–32) New York: NY: Springer.

    Google Scholar 

  20. Grondin, S. (2014b). Why studying intermodal duration discrimination matters. Frontiers in Psychology: Perception Science, 5, 628. doi:https://doi.org/10.3389/fpsyg.2014.00628

    Article  Google Scholar 

  21. Grondin, S., Gamache, P.-L., Tobin, S., Bisson, N., & Hawke, L. (2008). Categorization of brief temporal intervals: An auditory processing context may impair visual performances. Acoustical Science & Technology, 29, 338–340.

    Article  Google Scholar 

  22. Grondin, S., Ivry, R., Franz, E., Perreault, L., & Metthé, L. (1996). Markers’ influence on the duration discrimination of intermodal intervals. Perception & Psychophysics, 58, 424–433.

    Article  Google Scholar 

  23. Grondin, S., Ouellet, B., & Roussel, M.-E. (2001). About optimal timing and stability of Weber fraction for duration discrimination. Acoustical Science & Technology, 22, 370–372.

    Article  Google Scholar 

  24. Grondin, S., Ouellet, B., & Roussel, M.-E. (2004). Benefits and limits of explicit counting for discriminating temporal intervals. Canadian Journal of Experimental Psychology, 58, 1–12.

    Article  Google Scholar 

  25. Grondin, S., & Rousseau, R. (1991). Judging the relative duration of multimodal short empty time intervals. Perception & Psychophysics, 49, 245–256.

    Article  Google Scholar 

  26. Grondin, S., Roussel, M.-E., Gamache, P.-L., Roy, M., & Ouellet, B. (2005). The structure of sensory events and the accuracy of judgments about time. Perception, 34, 45–58.

    Article  Google Scholar 

  27. Hartcher-O’Brien, J., Di Luca, M., & Ernst, M. O. (2014). The duration of uncertain times: Audiovisual information about intervals is integrated in a statistically optimal fashion. PLOS ONE 9(3), e89339. doi:https://doi.org/10.1371/journal.pone.0089339

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hocherman, S., & Ben-Dov, G. (1979). Modality-specific effects on discrimination of short empty time intervals. Perceptual & Motor Skills, 48, 807–814.

    Article  Google Scholar 

  29. Kanai, R., Lloyd, H., Bueti, D., & Walsh, V. (2011). Modality-independent role of the primary auditory cortex in time estimation. Experimental Brain Research, 209, 465–471.

    Article  Google Scholar 

  30. Keele, S. W. (1986). Motor control. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of Perception and Human Performance: Vol. 2. Cognitive processes and performance (pp. 30-1–30-60). Toronto, Canada: Wiley.

    Google Scholar 

  31. Kuroda, T., Hasuo, E., Labonté, K., Laflamme, V., & Grondin, S. (2014). Discrimination of two neighboring intramodal and intermodal empty time intervals marked by three successive stimuli. Acta Psychologica, 9, 134–141.

    Article  Google Scholar 

  32. Mayer, K. M., Di Luca, M.. & Ernst, M. O. (2014). Duration perception in crossmodally-defined intervals. Acta Psychologica, 147, 2–9.

    Article  Google Scholar 

  33. Mioni, G., Grassi, M., Tarantino, V., Stablum, F., Grondin, S., & Bisiacchi, P. S. (2016a). The impact of a concurrent motor task on auditory and visual temporal discrimination tasks. Attention, Perception, & Psychophysics, 78, 742–748.

    Article  Google Scholar 

  34. Mioni, G., Grondin, S., Forgione, M., Fracasso, V., Mapelli, D. & Stablum, F. (2016b). The role of primary auditory and visual cortices in temporal processing: A tDCS approach. Behavioural Brain Research, 313, 151–157.

    Article  Google Scholar 

  35. Mioni, G., Grondin, S., Mapelli, D., & Stablum, F. (2018). A tRNS investigation of the sensory representation of time. Scientific Reports, 8, 10364, doi:https://doi.org/10.1038/s41598-018-28673-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 26, 1770–1787.

    PubMed  Google Scholar 

  37. Posner, M. I. (1978). Chronometric explorations of the mind. Hillsdale, NJ: Erlbaum.

  38. Rammsayer, T., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8, 270–277.

  39. Rousseau, L., & Rousseau, R. (1996) Stop-reaction time and the internal clock. Perception & Psychophysics, 58, 434–448.

    Article  Google Scholar 

  40. Rousseau, R., & Kristofferson, A. B. (1973). The discrimination of bimodal temporal gaps. Bulletin of the Psychonomic Society, 1, 115–116.

    Article  Google Scholar 

  41. Rousseau, R., Poirier, J., & Lemyre, L. (1983). Duration discrimination of empty time intervals marked by intermodal pulses. Perception & Psychophysics, 34, 541–548.

    Article  Google Scholar 

  42. Stauffer, C. C., Haldemann, J., Troche, S. J., & Rammsayer, T. H. (2012). Auditory and visual temporal sensitivity: Evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research, 76, 20–31.

    Article  Google Scholar 

  43. Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker-counter model. Perception & Psychophysics, 68, 1140–1152.

    Article  Google Scholar 

  44. van Noorden, L. (1975). Temporal coherence in the perception of tone sequences (Unpublished doctoral dissertation). Eindhoven University of Technology, Eindhoven, Netherlands. doi:https://doi.org/10.6100/IR152538

  45. Walker, J. T., & Scott, K. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones and gaps. Journal of Experimental Psychology: Human Perception and Performance, 7, 1327–1339.

    PubMed  Google Scholar 

  46. Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. Quarterly Journal of Experimental Psychology, 51B, 97–120.

    Google Scholar 

Download references

Acknowledgements

This study is part of the Doctoral thesis of L.A. This study was supported by a research grant (Grant No. RGPIN-2016-05028) from the Natural Sciences and Engineering Research Council of Canada to S.G. We would like to thank Célyne Bastien for her comments on this project and one anonymous reviewer for the comments on a previous version of this article. Correspondence should be addressed to Simon Grondin, École de psychologie, 2325 rue des Bibliothèques, Université Laval, Québec, Qc, Canada, G1V 0A6 (E-mail: simon.grondin@psy.ulaval.ca).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simon Grondin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azari, L., Mioni, G., Rousseau, R. et al. An analysis of the processing of intramodal and intermodal time intervals. Atten Percept Psychophys 82, 1473–1487 (2020). https://doi.org/10.3758/s13414-019-01900-7

Download citation

Keywords

  • Temporal Processing
  • Time perception
  • Sensory modalities