Predictable events elicit less visual and temporal information uptake in an oddball paradigm

Abstract

In the visual oddball paradigm, surprising inputs can seem expanded in time relative to unsurprising repeated events. A horizontal input embedded in a train of successive vertical inputs can, for instance, seem relatively protracted in time, even if all inputs are presented for an identical duration. It is unclear if this effect results from surprising events becoming apparently protracted, or from repeated events becoming apparently contracted in time. To disambiguate, we used a non-relative duration reproduction task, in which several standards preceded a test stimulus that had to be reproduced. We manipulated the predictability of test content over successive presentations. Overall, our data suggest that predictable stimuli induce a contraction of apparent duration (Experiments 1, 3, and 4). We also examine sensitivity to test content, and find that predictable stimuli elicit less uptake of visual information (Experiments 2 and 3). We discuss these findings in relation to the predictive coding framework.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 08 July 2020

    The Publisher regrets the following production error. The labels for Figures 2, 4, 5, 6, and 7 describe an older version of the figures. The correct figure labels are as follows:

References

  1. Arnold, D.H., Nancarrow, K. & Yarrow, K. (2012). The critical events for motor-sensory temporal recalibration. Frontiers in Human Neuroscience, 6, 235 doi:https://doi.org/10.3389/fnhum.2012.00235

    Article  PubMed  PubMed Central  Google Scholar 

  2. Astle, A. T., Webb, B. S., & McGraw, P. V. (2010). Spatial frequency discrimination learning in normal and developmentally impaired human vision. Vision Research, 50(23), 2445-2454. doi:https://doi.org/10.1016/j.visres.2010.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Augustine, St. (1960). The confessions of St Augustine. New York, NY: Image Books.

    Google Scholar 

  4. Barlow, H. (1958). Temporal and spatial summation in human vision at different background intensities. Journal of Physiology, 141, 337 – 350.

    Article  Google Scholar 

  5. Birngruber, T., Schröter, H., Schütt, E., & Ulrich, R. (2018). Stimulus expectation prolongs rather than shortens perceived duration: Evidence from self-generated expectations. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 117-127. doi:https://doi.org/10.1037/xhp0000433

    Article  PubMed  Google Scholar 

  6. Birngruber, T., Schröter, H., & Ulrich, R. (2015). The influence of stimulus repetition on duration judgments with simple stimuli. Frontiers in Psychology, 6, 1213. doi:https://doi.org/10.3389/fpsyg.2015.01213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Block, R. A., & Grondin, S. (2014). Timing and time perception: A selective review and commentary on recent reviews. Frontiers in Psychology, 5, 648. doi:https://doi.org/10.3389/fpsyg.2014.00648

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cai, M. B., Eagleman, D. M., & Ma, W. J. (2015). Perceived duration is reduced by repetition but not by high-level expectation. Journal of Vision, 15(13), 1–17. doi: https://doi.org/10.1167/15.13.19

    Article  Google Scholar 

  9. Clarke, F. J. J., & Belcher, S. J. (1962). On the localisation of Troxler’s effect in the visual pathway. Vision Research, 2(1-4), 53-68. doi:https://doi.org/10.1016/0042-6989(62)90063-9

    Article  Google Scholar 

  10. Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4(215). doi:https://doi.org/10.3389/fnhum.2010.00215

  11. Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127-138. doi:https://doi.org/10.1038/nrn2787

    Article  PubMed  Google Scholar 

  12. Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582. doi:https://doi.org/10.3758/APP.72.3.561

    Article  Google Scholar 

  13. Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33(9), 1219-1240. doi:https://doi.org/10.1016/0042-6989(93)90210-N

    Article  PubMed  Google Scholar 

  14. Kanai, R., & Watanabe, M. (2006). Visual onset expands subjective time. Perception & Psychophysics, 68(7), 1113-1123. doi:https://doi.org/10.3758/BF03193714

    Article  Google Scholar 

  15. Keane, B., Spence, M., Yarrow, K. & Arnold, D.H. (2015). Perceptual confidence demonstrates trial-by-trial insight into the precision of audio-visual timing perception. Consciousness & Cognition 38, 107 – 117.

    Article  Google Scholar 

  16. Knill, D., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712-719. doi:https://doi.org/10.1016/j.tins.2004.10.007

    Article  PubMed  Google Scholar 

  17. Koch, C., & Poggio, T. (1999). Predicting the visual world: Silence is golden. Nature, 2(1), 9-10. doi:https://doi.org/10.1038/4511

    Article  Google Scholar 

  18. Marinovic, W. & Arnold, D.H. (2012). Separable temporal metrics for time perception and anticipatory actions. Proceedings of the Royal Society of London, Series B: Biological Sciences 279, 854 - 859.

    Article  Google Scholar 

  19. Matthews, W. J. (2011). Stimulus repetition and the perception of time: The effects of prior exposure on temporal discrimination, judgment, and production. PLoS ONE, 6(5), e19815. doi:https://doi.org/10.1371/journal.pone.0019815

    Article  PubMed  PubMed Central  Google Scholar 

  20. Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142(8), 865–907. doi:https://doi.org/10.1037/bul0000045

    Article  PubMed  Google Scholar 

  21. Mella, N., Conty, L., & Pouthas, V. (2011). The role of physiological arousal in time perception: Psychophysiological evidence from an emotion regulation paradigm. Brain and Cognition, 75(2), 182-187. doi:https://doi.org/10.1016/j.bandc.2010.11.012

    Article  PubMed  Google Scholar 

  22. Mioni, G., Stablum, F., McClintock, S. M., & Grondin, S. (2014). Different methods for reproducing time, different results. Attention, Perception, & Psychophysics, 76(3), 675-681. doi:https://doi.org/10.3758/s13414-014-0625-3

    Article  Google Scholar 

  23. Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631-1647. doi:https://doi.org/10.1016/0042-6989(89)90144-2

    Article  PubMed  Google Scholar 

  24. Pariyadath, V., & Eagleman, D. (2007). The effect of predictability of subjective duration. PLoS ONE, 2(11), e1264. doi:https://doi.org/10.1371/journal.pone.0001264

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patel, A., Maurer, D., & Lewis, T. L. (2010). The development of spatial frequency discrimination. Journal of Vision, 10(14):41, 1-10. doi:https://doi.org/10.1167/10.14.41

    Article  PubMed  Google Scholar 

  26. Peters, J. C., van den Boomen, C., & Kemner, C. (2017). Spatial Frequency Training Modulates Neural Face Processing: Learning Transfers from Low- to High-Level Visual Features. Frontiers in Human Neuroscience, 11(1), 1-9. doi:https://doi.org/10.3389/fnhum.2017.00001

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature, 2(1), 79-87. doi:https://doi.org/10.1038/4580

    Article  Google Scholar 

  28. Rauss, K., Schwartz, S., & Pourtois, G. (2011). Top-down effects on early visual processing in humans: A predictive coding framework. Neuroscience and Biobehavioral Reviews, 35(5), 1237-1253. doi:https://doi.org/10.1016/j.neubiorev.2010.12.011

    Article  PubMed  Google Scholar 

  29. Schindel, R., Rowlands, J., & Arnold, D. (2011). The oddball effect: Perceived duration and predictive coding. Journal of Vision, 11(2), 1-9. doi:https://doi.org/10.1167/11.2.17

    Article  Google Scholar 

  30. Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock.” Psychological Monographs, 77(13), 1-31. doi:https://doi.org/10.1037/h0093864

    Article  PubMed  Google Scholar 

  31. Tse, P., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66(7), 1171-1189. doi:https://doi.org/10.3758/BF03196844

    Article  Google Scholar 

  32. Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Perceived duration of expected and unexpected stimuli. Psychological Research, 70(2), 77-87. doi:https://doi.org/10.1007/s00426-004-0195-4

    Article  PubMed  Google Scholar 

  33. Vierordt, K. (1868). Der Zeitsinn nach Versuchen. Tübingen, Germany: Laupp.

    Google Scholar 

  34. Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217–223. doi:https://doi.org/10.1038/nrn3452

    Article  PubMed  Google Scholar 

  35. Yarrow, K., & Rothwell, J. C. (2003). Manual chronostasis: Tactile perception precedes physical contact. Current Biology, 13(13), 1134–1139. doi:https://doi.org/10.1016/S0960-9822(03)00413-5

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Blake W. Saurels.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saurels, B.W., Lipp, O.V., Yarrow, K. et al. Predictable events elicit less visual and temporal information uptake in an oddball paradigm. Atten Percept Psychophys 82, 1074–1087 (2020). https://doi.org/10.3758/s13414-019-01899-x

Download citation

Keywords

  • Time perception
  • Oddball
  • prediction
  • visual sensitivity