Declarative and procedural working memory updating processes are mutually facilitative

Abstract

Executive function, or cognitive control, describes the ability to guide information processing in line with internal goals, but the nature of—and relationship between—the component processes supporting this ability remains poorly understood. Two key components of cognitive control are thought to be the regulation of the declarative contents of working memory (WM) and the selection of task sets, or procedural rules that determine how declarative items are employed. Factor-analytic studies have suggested that updating the items held in WM and updating task sets are cognitively distinct, but interrelated, core domains of executive function. However, the precise relationship between these processes remains unknown, since they have rarely been tested simultaneously in a single task. In the present study, we devised a novel method of independently manipulating declarative item-updating and procedural task-updating processes in WM. Across two experiments, we found that the updating of declarative and procedural WM representations interacted subadditively, suggesting they are not constrained by a common processing bottleneck. Moreover, in a third experiment, we found that updating two declarative items in WM simultaneously did not incur a behavioral cost in response time above and beyond the cost of one item alone. Taken together, our results provide new evidence that the updating of information in declarative and procedural WM is mutually facilitative, such that opening the gate for updating declarative content reduces the time needed to update procedural content, and vice versa.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bainbridge, W. A., Isola, P., & Oliva, A. (2013). The intrinsic memorability of face photographs. Journal of Experimental Psychology: General, 142, 1323–1334. https://doi.org/10.1037/a0033872

    Article  Google Scholar 

  2. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65–94. https://doi.org/10.1037/0033-2909.121.1.65

    Article  PubMed  Google Scholar 

  3. Bertolino, A., Blasi, G., Latorre, V., Rubino, V., Rampino, A., Sinibaldi, L., … Dallapiccola, B. (2006). Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. Journal of Neuroscience, 26, 3918–3922. https://doi.org/10.1523/jneurosci.4975-05.2006

    Article  PubMed  Google Scholar 

  4. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 713–737). Cambridge, MA: MIT Press.

    Google Scholar 

  5. Chiu, Y.-C., & Egner, T. (2017). Cueing cognitive flexibility: Item-specific learning of switch readiness. Journal of Experimental Psychology: Human Perception and Performance, 43, 1950–1960. https://doi.org/10.1037/xhp0000420

    Article  PubMed  Google Scholar 

  6. Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. Journal of Neuroscience, 30, 14245–14254. https://doi.org/10.1523/jneurosci.1662-10.2010

    Article  PubMed  Google Scholar 

  7. Cole, M. W., Ito, T., & Braver, T. S. (2015). The behavioral relevance of task information in human prefrontal cortex. Cerebral Cortex, 26, 2497–2505. https://doi.org/10.1093/cercor/bhv072

    Article  PubMed  Google Scholar 

  8. Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13, 1–22. https://doi.org/10.3758/s13415-012-0125-7

    Article  Google Scholar 

  9. Cools, R. (2008). Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist, 14, 381–395. https://doi.org/10.1177/1073858408317009

    Article  Google Scholar 

  10. Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69, e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185. https://doi.org/10.1017/S0140525X01003922

    Article  PubMed  PubMed Central  Google Scholar 

  12. Crump, M. J. C., & Logan, G. D. (2010). Contextual control over task-set retrieval. Attention, Perception, & Psychophysics, 72, 2047–2053. https://doi.org/10.3758/BF03196681

    Article  Google Scholar 

  13. D’Ardenne, K., Eshel, N., Luka, J., Lenartowicz, A., Nystrom, L. E., & Cohen, J. D. (2012). Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of Sciences, 109, 1900–1909.

  14. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205

    Article  PubMed  Google Scholar 

  15. Dreisbach, G. (2012). Mechanisms of cognition control: The functional role of task rules. Current Directions in Psychological Science, 21, 227–231. https://doi.org/10.1177/0963721412449830

    Article  Google Scholar 

  16. Dreisbach G., & Haider, H. (2006). Preparatory adjustment of cognitive control in the task switching paradigm. Psychonomic Bulletin & Review, 13, 334-338

  17. Dreisbach, G., & Haider, H. (2008). That’s what task sets are for: Shielding against irrelevant information. Psychological Research, 72, 355–361.

    Article  Google Scholar 

  18. Dreisbach, G., & Wenke, D. (2011). The shielding function of task sets and its relaxation during task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1540–1546.

    PubMed  Google Scholar 

  19. Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience, 1, 137–160. https://doi.org/10.3758/CABN.1.2.137

    Article  Google Scholar 

  20. Friedman, N. P., Haberstick, B. C., Willcutt, E. G., Miyake, A., Young, S. E., Corley, R. P., & Hewitt, J. K. (2007). Greater attention problems during childhood predict poorer executive functioning in late adolescence. Psychological Science, 18, 893–900. https://doi.org/10.1111/j.1467-9280.2007.01997.x

    Article  PubMed  Google Scholar 

  21. Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179. https://doi.org/10.1111/j.1467-9280.2006.01681.x

    Article  PubMed  Google Scholar 

  22. Friedman, N. P., Miyake, A., Robinson, J. L., & Hewitt, J. K. (2011). Developmental trajectories in toddlers’ self-restraint predict individual differences in executive functions 14 years later: A behavioral genetic analysis. Developmental Psychology, 47, 1410–1430. https://doi.org/10.1037/a0023750

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201–225. https://doi.org/10.1037/0096-3445.137.2.201

    Article  Google Scholar 

  24. Gade, M., Souza, A. S., Druey, M. D., & Oberauer, K. (2017). Analogous selection processes in declarative and procedural working memory: N–2 list-repetition and task-repetition costs. Memory & Cognition, 45, 26–39. https://doi.org/10.3758/s13421-016-0645-4

    Article  Google Scholar 

  25. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26, 263–276. https://doi.org/10.3758/BF03201138

    Article  Google Scholar 

  26. Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105–118.

    Article  Google Scholar 

  27. Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15, 132–139. https://doi.org/10.1016/j.tics.2010.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kessler, Y. (2017). The role of working memory gating in task switching: A procedural version of the reference-back paradigm. Frontiers in Psychology, 8, 2260. https://doi.org/10.3389/fpsyg.2017.02260

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kessler, Y., Baruchin, L. J., & Bouhsira-Sabag, A. (2017). Working memory updating occurs independently of the need to maintain task-context: Accounting for triggering updating in the AX-CPT paradigm. Psychological Research, 81, 191–203. https://doi.org/10.1007/s00426-015-0717-2

    Article  PubMed  Google Scholar 

  30. Kessler, Y., & Oberauer, K. (2014). Working memory updating latency reflects the cost of switching between maintenance and updating modes of operation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 738–754. https://doi.org/10.1037/a0035545

    Article  PubMed  Google Scholar 

  31. Kessler, Y., & Oberauer, K. (2015). Forward scanning in verbal working memory updating. Psychonomic Bulletin & Review, 22, 1770–1776. https://doi.org/10.3758/s13423-015-0853-0

    Article  Google Scholar 

  32. Kleinsorge, T., & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62, 300–312. https://doi.org/10.1007/s004260050060

    Article  Google Scholar 

  33. Korb, F. M., Jiang, J., King, J. A., & Egner, T. (2017). Hierarchically organized medial frontal cortex-basal ganglia loops selectively control task-and response-selection. Journal of Neuroscience, 37, 7893–7905.

    Article  Google Scholar 

  34. Leber, A. B., Turk-Browne, N. B., & Chun, M. M. (2008). Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proceedings of the National Academy of Sciences, 105, 13592–13597. https://doi.org/10.1073/pnas.0805423105

    Article  Google Scholar 

  35. Leboe, J. P., Wong, J., Crump, M., & Stobbe, K. (2008). Probe-specific proportion task repetition effects on switching costs. Perception & Psychophysics, 70, 935–945. https://doi.org/10.3758/pp.70.6.935

    Article  Google Scholar 

  36. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. https://doi.org/10.1038/36846

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26. https://doi.org/10.1037/0096-3445.129.1.4

    Article  Google Scholar 

  38. Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., … Shoda, Y. (2011). “Willpower” over the life span: Decomposing self-regulation. Social Cognitive and Affective Neuroscience, 6, 252–256. https://doi.org/10.1093/scan/nsq081

    Article  PubMed  Google Scholar 

  39. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Current Directions in Psychological Science, 21, 8–14. https://doi.org/10.1177/0963721411429458

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. https://doi.org/10.1006/cogp.1999.0734

    Article  PubMed  Google Scholar 

  41. Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., . . . Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108, 2693–2698. https://doi.org/10.1073/pnas.1010076108

  42. Monsell, S., & Mizon, G. A. (2006). Can the task-cuing paradigm measure an endogenous task-set reconfiguration process? Journal of Experimental Psychology: Human Perception and Performance, 32, 493–516. https://doi.org/10.1037/0096-1523.32.3.493

    Article  PubMed  Google Scholar 

  43. Montojo, C. A., & Courtney, S. M. (2008). Differential neural activation for updating rule versus stimulus information in working memory. Neuron, 59, 173–182. https://doi.org/10.1016/j.neuron.2008.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muhle-Karbe, P. S., Andres, M., & Brass, M. (2014). Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation. Journal of Neuroscience, 34, 12481–12489. https://doi.org/10.1523/jneurosci.4931-13.2014

    Article  PubMed  Google Scholar 

  45. Nolan, K. A., Bilder, R. M., Lachman, H. M., & Volavka, J. (2004). Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: Differential effects of Val and Met alleles on cognitive stability and flexibility. American Journal of Psychiatry, 161, 359–361. https://doi.org/10.1176/appi.ajp.161.2.359

    Article  PubMed  Google Scholar 

  46. O’Reilly, R. C. (2006). Biologically based computational models of high-level cognition. Science, 314, 91–94.

    Article  Google Scholar 

  47. O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283–328. https://doi.org/10.1162/089976606775093909

    Article  PubMed  Google Scholar 

  48. Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50, 257–269. https://doi.org/10.1026//1618-3169.50.4.257

    Article  PubMed  Google Scholar 

  49. Oberauer, K. (2009). Design for a working memory. In B. H. Ross (Eds.), The psychology of learning and motivation (Vol. 51, pp. 45–100). San Diego, CA, US: Elsevier Academic Press.

    Google Scholar 

  50. Rac-Lubashevsky, R., & Kessler, Y. (2016). Dissociating working memory updating and automatic updating: The reference-back paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 951–969.

    PubMed  Google Scholar 

  51. Risse, S., & Oberauer, K. (2010). Selection of objects and tasks in working memory. Quarterly Journal of Experimental Psychology, 63, 784–804. https://doi.org/10.1080/17470210903147486

    Article  Google Scholar 

  52. Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. https://doi.org/10.1037/0096-3445.124.2.207

    Article  Google Scholar 

  53. Sali, A. W., Anderson, B. A., & Yantis, S. (2015). Learned states of preparatory attentional control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1790–1805. https://doi.org/10.1037/xlm0000146

    Article  PubMed  Google Scholar 

  54. Sali, A. W., Courtney, S. M., & Yantis, S. (2016). Spontaneous fluctuations in the flexible control of covert attention. Journal of Neuroscience, 36, 445–454. https://doi.org/10.1523/jneurosci.2323-15.2016

    Article  PubMed  Google Scholar 

  55. Souza, A. S., Oberauer, K., Gade, M., & Druey, M. D. (2012). Processing of representations in declarative and procedural working memory. Quarterly Journal of Experimental Psychology, 65, 1006–1033. https://doi.org/10.1080/17470218.2011.640403

    Article  Google Scholar 

  56. Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in simple processing systems. In N. J. Castellan Jr. & F. Restle (Eds.), Cognitive theory (Vol. 3, pp. 200–239). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  57. Townsend J. T., & Ashby F. G. (1983). The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.

  58. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413. https://doi.org/10.1016/S0010-0285(02)00520-0

    Article  PubMed  Google Scholar 

Download references

Author Note

This research was supported in part by National Institutes of Health Grant R01-MH087610 to T.E and in part by US-Israel Binational Science Foundation (BSF) grant 2016234 to TE. We thank Yoav Kessler for helpful comments on an earlier draft of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Sali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sali, A.W., Egner, T. Declarative and procedural working memory updating processes are mutually facilitative. Atten Percept Psychophys 82, 1858–1871 (2020). https://doi.org/10.3758/s13414-019-01887-1

Download citation

Keywords

  • Working memory
  • Task switching
  • Executive control
  • Cognitive and attentional control