Explicitly versus implicitly driven temporal expectations: No evidence for altered perceptual processing due to top-down modulations

Abstract

Learning the statistical regularities of environmental events is a powerful tool for enhancing performance. However, it remains unclear whether this often implicit type of behavioral facilitation can be proactively modulated by explicit knowledge about temporal regularities. Only recently, Menceloglu and colleagues (Attention, Perception & Psychophysics, 79(1), 169–179, 2017) tested for differences between implicit versus explicit statistical learning of temporal regularities by using a within-paradigm manipulation of metacognitive temporal knowledge. The authors reported that temporal expectations were enhanced if participants had explicit knowledge about temporal regularities. Here, we attempted to replicate and extend their results, and to provide a mechanistic framework for any effects by means of computational modelling. Participants performed a letter-discrimination task, with target letters embedded in congruent or incongruent flankers. Temporal predictability was manipulated block-wise, with targets occurring more often after either a short or a long delay period. During the delay a sound was presented in half of the trials. Explicit knowledge about temporal regularities was manipulated by changing instructions: Participants received no information (implicit), information about the most likely cue-target delay (explicit), or received 100% valid cues on each trial (highly explicit). We replicated previous effects of target-flanker congruence and sound presence. However, no evidence was found for an effect of explicit knowledge on temporal expectations using Bayesian statistics. Concordantly, computational modelling suggested that explicit knowledge may only influence non-perceptual processing such as response criteria. Together, our results indicate that explicit metacognitive knowledge does not necessarily alter sensory representations or temporal expectations but rather affects response strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

The authors declare that the analysed data as well as the supplementary analyses (not reported in the manuscript) are available in the Supplementary Information files.

References

  1. Ball, F., Fuehrmann, F., Stratil, F., & Noesselt, T. (2018a). Phasic and sustained interactions of multisensory interplay and temporal expectation. Nature Scientific Reports, 8, 10208. https://doi.org/10.1038/s41598-018-28495-7

    Article  Google Scholar 

  2. Ball, F., Michels, L. E., Thiele, C., & Noesselt, T. (2018b). The role of multisensory interplay in enabling temporal expectations. Cognition, 170, 130–146. https://doi.org/10.1016/j.cognition.2017.09.015

    Article  PubMed  Google Scholar 

  3. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(2), 224–234. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12696811

  5. Correa, Á., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic Bulletin & Review, 12(2), 328–334. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16082814

  6. Coull, J. T. (2009). Neural substrates of mounting temporal expectation. PLoS Biology, 7(8), e1000166. https://doi.org/10.1371/journal.pbio.1000166

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coull, J. T., Cheng, R.-K., & Meck, W. H. (2011). Neuroanatomical and Neurochemical Substrates of Timing. Neuropsychopharmacology, 36(1), 3–25. https://doi.org/10.1038/npp.2010.113

    Article  PubMed  Google Scholar 

  8. Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18(18), 7426–7435. https://doi.org/0270-6474/98/187426-10$05.00/0

  9. Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal Expectation Enhances Contrast Sensitivity by Phase Entrainment of Low-Frequency Oscillations in Visual Cortex. Journal of Neuroscience, 33(9), 4002–4010. https://doi.org/10.1523/JNEUROSCI.4675-12.2013

    Article  PubMed  Google Scholar 

  10. Ewolds, H. E., Bröker, L., de Oliveira, R. F., Raab, M., & Künzell, S. (2017). Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task. Frontiers in Psychology, 8, 2241. https://doi.org/10.3389/fpsyg.2017.02241

    Article  PubMed  PubMed Central  Google Scholar 

  11. Francken, J. C., Gaal, S. van, & de Lange, F. P. (2011). Immediate and long-term priming effects are independent of prime awareness. Consciousness and Cognition, 20(4), 1793–1800. https://doi.org/10.1016/j.concog.2011.04.005

    Article  PubMed  Google Scholar 

  12. Geyer, T., Baumgartner, F., Müller, H. J., & Pollmann, S. (2012). Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs. explicit processing of individual repeated search displays. Frontiers in Human Neuroscience, 6, 272. https://doi.org/10.3389/fnhum.2012.00272

    Article  PubMed  PubMed Central  Google Scholar 

  13. Griffin, I. C., Miniussi, C., & Nobre, A. C. (2001). Orienting attention in time. Frontiers in Bioscience, 6, 660–671.

    Article  Google Scholar 

  14. Hannula, D. E., & Greene, A. J. (2012). The hippocampus reevaluated in unconscious learning and memory: at a tipping point? Frontiers in Human Neuroscience, 6, 80. https://doi.org/10.3389/fnhum.2012.00080

    Article  PubMed  PubMed Central  Google Scholar 

  15. Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews. Neuroscience, 11(7), 523–532. https://doi.org/10.1038/nrn2850

    Article  PubMed  Google Scholar 

  16. Heuer, H., & Schmidtke, V. (1996). Secondary-task effects on sequence learning. Psychological Research, 59(2), 119–133. https://doi.org/10.1007/BF01792433

    Article  PubMed  Google Scholar 

  17. Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14(2), 246–251. https://doi.org/10.1038/nn.2688

    Article  PubMed  Google Scholar 

  18. Jepma, M., Wagenmakers, E. J., & Nieuwenhuis, S. (2012). Temporal expectation and information processing: A model-based analysis. Cognition, 122(3), 426–441. https://doi.org/10.1016/j.cognition.2011.11.014

    Article  PubMed  Google Scholar 

  19. Lange, K., & Röder, B. (2006). Orienting attention to points in time improves stimulus processing both within and across modalities. Journal of Cognitive Neuroscience, 18(5), 715–729. https://doi.org/10.1162/jocn.2006.18.5.715

    Article  PubMed  Google Scholar 

  20. Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186–191. https://doi.org/10.1016/j.cognition.2009.11.010

    Article  PubMed  Google Scholar 

  21. Max, C., Widmann, A., Schröger, E., & Sussman, E. (2015). Effects of explicit knowledge and predictability on auditory distraction and target performance. International Journal of Psychophysiology, 98(2), 174–181. https://doi.org/10.1016/j.ijpsycho.2015.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  22. Menceloglu, M., Grabowecky, M., & Suzuki, S. (2017). Comparing the effects of implicit and explicit temporal expectation on choice response time and response conflict. Attention, Perception & Psychophysics, 79(1), 169–179. https://doi.org/10.3758/s13414-016-1230-4

    Article  Google Scholar 

  23. Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. https://doi.org/10.1016/0010-0285(87)90002-8

    Article  Google Scholar 

  24. Nobre, A. C., & Rohenkohl, G. (2014). Time for the Fourth Dimension in Attention. In A. C. Nobre & S. Kastner (Eds.), The Oxford Handbook of Attention (pp. 676–724). Oxford University Press.

  25. Preston, A. R., & Gabrieli, J. D. E. (2008). Dissociation between Explicit Memory and Configural Memory in the Human Medial Temporal Lobe. Cerebral Cortex, 18(9), 2192–2207. https://doi.org/10.1093/cercor/bhm245

    Article  Google Scholar 

  26. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/451109

  27. Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Computation, 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ratcliff, R., & Rouder, J. N. (1998). Modeling Response Times for Two-Choice Decisions. Psychological Science, 9(5), 347–356. https://doi.org/10.1111/1467-9280.00067

    Article  Google Scholar 

  29. Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the quality of sensory information. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(24), 8424–8428. https://doi.org/10.1523/JNEUROSCI.0804-12.2012

    Article  Google Scholar 

  30. Sanchez, D. J., & Reber, P. J. (2013). Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning. Cognition, 126(3), 341–351. https://doi.org/10.1016/j.cognition.2012.11.006

    Article  PubMed  Google Scholar 

  31. Sanders, A. F. (1975). The foreperiod effect revisited. The Quarterly Journal of Experimental Psychology, 27(4), 591–598.

    Article  Google Scholar 

  32. Schlagbauer, B., Muller, H. J., Zehetleitner, M., & Geyer, T. (2012). Awareness in contextual cueing of visual search as measured with concurrent access- and phenomenal-consciousness tasks. Journal of Vision, 12(11), 25–25. https://doi.org/10.1167/12.11.25

    Article  PubMed  Google Scholar 

  33. Schroeder, S. C. Y., Ball, F., & Busch, N. A. (2018). The role of alpha oscillations in distractor inhibition during memory retention. European Journal of Neuroscience. https://doi.org/10.1111/ejn.13852

  34. Seitz, A. R. (2017). Perceptual learning. Current Biology, 27(13), R631–R636. https://doi.org/10.1016/j.cub.2017.05.053

    Article  PubMed  Google Scholar 

  35. Seitz, A. R., & Watanabe, T. (2009). The phenomenon of task-irrelevant perceptual learning. Vision Research, 49(21), 2604–2610. https://doi.org/10.1016/j.visres.2009.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shen, D., & Alain, C. (2012). Implicit temporal expectation attenuates auditory attentional blink. PloS One, 7(4), e36031. https://doi.org/10.1371/journal.pone.0036031

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stefaniak, N., Willems, S., Adam, S., & Meulemans, T. (2008). What is the impact of the explicit knowledge of sequence regularities on both deterministic and probabilistic serial reaction time task performance? Memory & Cognition, 36(7), 1283–1298. https://doi.org/10.3758/MC.36.7.1283

    Article  Google Scholar 

  38. Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409. https://doi.org/10.1016/j.tics.2009.06.003

    Article  PubMed  Google Scholar 

  39. Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities Without Awareness. Journal of Cognitive Neuroscience, 21(10), 1934–1945. https://doi.org/10.1162/jocn.2009.21131

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(33), 11177–11187. https://doi.org/10.1523/JNEUROSCI.0858-10.2010

    Article  Google Scholar 

  41. Van den Bussche, E., Vermeiren, A., Desender, K., Gevers, W., Hughes, G., Verguts, T., & Reynvoet, B. (2013). Disentangling conscious and unconscious processing: a subjective trial-based assessment approach. Frontiers in Human Neuroscience, 7, 769. https://doi.org/10.3389/fnhum.2013.00769

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14(6), 1011–1026. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18229471

  43. Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with MATLAB: a DMAT primer. Behavior Research Methods, 40(1), 61–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18411528

  44. Visser, T. A. W., Ohan, J. L., & Enns, J. T. (2015). Temporal cues derived from statistical patterns can overcome resource limitations in the attentional blink. Attention, Perception & Psychophysics, 77(5), 1585–1595. https://doi.org/10.3758/s13414-015-0880-y

    Article  Google Scholar 

  45. Visser, T. A. W., Tang, M. F., Badcock, D. R., & Enns, J. T. (2014). Temporal cues and the attentional blink: a further examination of the role of expectancy in sequential object perception. Attention, Perception & Psychophysics, 76(8), 2212–2220. https://doi.org/10.3758/s13414-014-0710-7

    Article  Google Scholar 

  46. Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76. https://doi.org/10.3758/s13423-017-1323-7

    Article  Google Scholar 

  47. Wang, P., & Nikolić, D. (2011). An LCD Monitor with Sufficiently Precise Timing for Research in Vision. Frontiers in Human Neuroscience, 5(85), 85. https://doi.org/10.3389/fnhum.2011.00085

    Article  PubMed  PubMed Central  Google Scholar 

  48. Westerberg, C. E., Miller, B. B., Reber, P. J., Cohen, N. J., & Paller, K. A. (2011). Neural correlates of contextual cueing are modulated by explicit learning. Neuropsychologia, 49(12), 3439–3447. https://doi.org/10.1016/j.neuropsychologia.2011.08.019

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J., & Rowe, J. B. (2014). Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift-diffusion model. Frontiers in Neuroscience, 8, 69. https://doi.org/10.3389/fnins.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Fonds for regional Development (EFRE), ZS/2016/04/78113, Center for Behavioral Brain Sciences – CBBS. We thank three anonymous referees for their helpful comments.

Author contributions statement

F.B. designed the experiment. R.M.G acquired the data. F.B. analysed the data. All authors wrote and revised the manuscript.

Open Practices Statement

Code availability Data were analysed with JASP (freely available) and the DMAT toolbox for Matlab (version 0.4). The remaining code is available upon request.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Ball.

Ethics declarations

Competing interests

The authors declare no competing financial and non-financial interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 492 kb)

ESM 2

(PDF 1400 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ball, F., Groth, R., Agostino, C.S. et al. Explicitly versus implicitly driven temporal expectations: No evidence for altered perceptual processing due to top-down modulations. Atten Percept Psychophys 82, 1793–1807 (2020). https://doi.org/10.3758/s13414-019-01879-1

Download citation

Keywords

  • Temporal expectations
  • Metacognition
  • Explicit vs. implicit learning
  • Computational models