Evidence for early top-down modulation of attention to salient visual cues through probe detection

Abstract

The influence of top-down attentional control on the selection of salient visual stimuli has been examined extensively. Some accounts suggest all salient stimuli capture attention in a stimulus-driven manner, while others suggest salient stimuli capture attention contingent on top-down relevance. Evidence consistently shows target templates allow only salient stimuli sharing a target’s features to capture attention, while salient stimuli not sharing a target’s features do not. A number of hypotheses (e.g., contingent orienting, disengagement, signal suppression) from both sides of this debate have been proposed; however, most predict similar performance in the visual search and spatial cuing tasks. The present study combined a cuing task, in which subjects identified a target defined by its having a unique feature, with a probe identification task developed by Gaspelin, Leonard, and Luck (Psychological Science, 26, 1740-1750, 2015), in which subjects identified letters appearing in potential target locations just after the appearance of a salient cue that matched or did not match the target-defining feature. The probe task provided a measure of where attention was focused just after the cue’s appearance. In six experiments, we observed top-down modulation of spatial cuing effects in response times and probe identification: Probes in the cued location were identified more often, but more when preceded by a cue that shared the target-defining feature. Though not unequivocal, the results are explained in terms of the on-going debate over whether top-down attentional control can prevent bottom-up capture by salient, task-irrelevant stimuli.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Gaspelin et al.’s (2016) dwelling hypothesis resolves why irrelevant onsets show capture effects in some situations and not others; however, the hypothesis was never applied to color singletons.

  2. 2.

    ESu = MInvalid - MValid.

  3. 3.

    \( {SE}_u=\sqrt{\frac{2{s}_p^2\left(1-r\right)}{n}} \)

  4. 4.

    \( {w}_u=\frac{n}{2{s}_p^2\left(1-r\right)} \)

References

  1. Anderson B. A. (2014). On the precision of goal-directed visual attentional selection. Journal of Experimental Psychology: Human Perception & Performance, 40, 1755-1762. doi: https://doi.org/10.1037/a0037685

    Article  Google Scholar 

  2. Anderson B. A. & Folk C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention, Perception, & Psychophysics, 72, 342–352. doi: https://doi.org/10.3758/APP.72.2.342

    Article  Google Scholar 

  3. Anderson B. A. & Folk C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention, Perception & Psychophysics, 74, 1183-1198. doi: https://doi.org/10.3758/s13414-012-0325-9

    Article  Google Scholar 

  4. Ansorge, U., & Heumann, M. (2003) Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception & Performance, 29, 937-948.

    Google Scholar 

  5. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Science, 16, 437-443. doi: https://doi.org/10.1016/j.tics.2012.06.010

    Article  Google Scholar 

  6. Bacon, W., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485-496.

    Google Scholar 

  7. Barras, C., & Kerzel, D. (2016). Nogo stimuli do not receive more attentional suppression or response inhibition than neutral stimuli: Evidence from the N2pc, PD, and N2 components in a spatial cueing paradigm. Frontiers in Psychology, 7:630. doi:https://doi.org/10.3389/fpsyg.2016.00630

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belopolsky, A.V., Kramer, A. F., & Theeuwes, J. (2005). Prioritization by visual transients in visual search. Psychonomic Bulletin & Review, 12, 93-99. doi: https://doi.org/10.3758/BF03196352

    Article  Google Scholar 

  9. Belopolsky, A.V., Schreij, D. & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception & Psychophysics, 72, 326-341. doi: https://doi.org/10.3758/APP.72.2.326

    Article  Google Scholar 

  10. Born, S., Kerzel, D., & Pratt, J. (2015). Contingent capture effects in temporal order judgments. Journal of Experimental Psychology: Human Perception & Performance, 41, 995-1006. doi: https://doi.org/10.1037/xhp0000058

    Article  Google Scholar 

  11. Burnham, B. R., Neely, J. H., Naginsky, Y., & Thomas, M. (2010). Stimulus-driven attentional capture by a static discontinuity between perceptual groups. Jurnal of Experimental Psychology: Human Perception & Performance, 36, 317-329. doi: https://doi.org/10.1037/a0015871

    Article  Google Scholar 

  12. Burnham, B. R. (2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14, 392-422.

    Google Scholar 

  13. Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50, 422-430. doi: https://doi.org/10.1111/psyp.12019

    Article  PubMed  Google Scholar 

  14. Büsel, C., Voracek, M., & Ansorge, U. (2018). A meta-analysis of contingent-capture effects. Psychological Research. doi. https://doi.org/10.1007/s00426-018-1087-3

  15. Chen, P., & Mordkoff, J.T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15, 637-646. doi: https://doi.org/10.1080/13506280701317968

    Article  Google Scholar 

  16. Corbetta, M., & Shulman, G. L. (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.

    PubMed  Google Scholar 

  17. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.

    PubMed  Google Scholar 

  18. Eimer, M. Kiss, M. (2010). Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence. Attention, perception & Psychophysics, 72, 951-962.

    Google Scholar 

  19. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191.

    PubMed  Google Scholar 

  20. Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64, 741-753.

    Google Scholar 

  21. Folk, C. L., Leber, A. B., & Egeth, H. E. (2006).Top-down control settings and the attentional blink: Evidence for nonspatial contingent capture. Visual Cognition, 16, 616-642. Doi: https://doi.org/10.1080/13506280601134018

    Article  Google Scholar 

  22. Folk, C. L., & Remington, R. W. (1998). Selectivity by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 24, 847-858. doi: https://doi.org/10.1080/13506280500193545

    Article  Google Scholar 

  23. Folk, C. L., & Remington, R. W. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445-465.

    Google Scholar 

  24. Folk, C. L., & Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16, 215-231.

    Google Scholar 

  25. Folk, C. L. & Remington, R. (2010). A critical evaluation of the disengagement hypothesis. Acta Psychologica, 135, 103-105.

    PubMed  Google Scholar 

  26. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18, 1030-1044.

    Google Scholar 

  27. Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20, 317-329.

    PubMed  Google Scholar 

  28. Franconeri, S. L., Simons, D. J., & Junge, J. A. (2005). Searching for stimulus-driven shifts of attention. Psychonomic Bulletin & Review, 11, 876-881.

    Google Scholar 

  29. Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. The Hournal of Neuroscience, 34, 5658-5666. doi: https://doi.org/10.1523/JNEUROSCI.4161-13.2014

    Article  PubMed  Google Scholar 

  30. Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740-1750. doi: https://doi.org/10.1177/0956797615597913

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gaspelin, N., & Luck, S. J. (2018). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception & Performance, 44, 626-644. doi: https://doi.org/10.1037/xhp0000484

    Article  Google Scholar 

  32. Gaspelin, N., Ruthruff, E., & Lien, M.-C. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception & Performance, 42, 1104-1120. https://doi.org/10.1037/xhp0000214

    Google Scholar 

  33. Gibson, B. S., & Kelsey, (1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. Journal of Experimental Psychology: Human Perception & Performance, 24, 699-706.

    Google Scholar 

  34. Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760-775.

    PubMed  Google Scholar 

  35. Hollands, J. G., & Jarmasz, J. (2010). Revisiting confidence intervals for repeated measures designs. Psychonomic Bulletin & Review, 17, 135-138. doi: https://doi.org/10.3758/PBR.17.1.135

    Article  Google Scholar 

  36. Huffman, G., Antinucci, V. M., & Pratt, J. (2018). The illusion of control: Sequential dependencies underlie contingent attentional capture. Psychonomic Bulletin & Review 25, 2238–2244. doi:https://doi.org/10.3758/s13423-017-1422-5

    Article  Google Scholar 

  37. Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception & Performance, 38, 758-775. doi:https://doi.org/10.1037/a0026578

    Article  Google Scholar 

  38. Johnson, J. D., Hutchison, K. A., & Neill, W. T. (2001). Attentional capture by irrelevant color singletons. Journal of Experimental Psychology: Human Perception & Performance, 27, 841-847.

    Google Scholar 

  39. Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movements. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance IX (pp. 187-203). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  40. Kim, M.-S., & Cave, K. R. (1999). Top-down and bottom-up attentional control: On the nature of the interference from a salient distractor. Perception & Psychophysics, 61, 1009-1023.

    Google Scholar 

  41. Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. Journal of Experimental Psychology: Human Perception & Performance, 29, 1021-1035.

    Google Scholar 

  42. Lamy, D. & Kristjánsson, Á. (2013). Is goal-directed attentional guidance just intertrial priming? A review. Journal of Vision, 13, 14.

    PubMed  Google Scholar 

  43. Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of task relevance and stimulus-driven salience in feature-search mode. Journal of Experimental Psychology: Human Perception and Performance, 30, 1019–1031. doi:https://doi.org/10.1037/0096-1523.30.6.1019

    Article  PubMed  Google Scholar 

  44. Lamy, D., Leber, A. B., & Egeth, H. E. (2012). Selective attention: Experimental psychology. In I. B. Weiner (Ed.), Handbook of psychology (2nd ed., Vol. 4, pp. 265–294). New York, NY: Wiley. doi:https://doi.org/10.1002/9781118133880.hop204010

  45. Leber, A. B. (2010). Neural predictors of within-subject fluctuations in attentional control. Journal of Neuroscience, 30 , 11458-11465. doi: https://doi.org/10.1523/JNEUROSCI.0809-10.2010

    Article  PubMed  Google Scholar 

  46. Leber, A. B., & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13, 132-138.

    Google Scholar 

  47. Lien, M.-C., Ruthruff, E., Goodin, Z., & Remington, R. W. (2008). Contingent attentional capture by top-down control settings: Converging evidence from event-related potentials. Journal of Experimental Psychology: Human Perception & Performance, 34, 509-530.

    Google Scholar 

  48. Lien, M.-C., Ruthruff, E., & Johnston, J. C. (2010). Attention capture with rapidly changing attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 36, 1-16.

    Google Scholar 

  49. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Sage Publications: Thousand Oaks, CA.

    Google Scholar 

  50. Luck, S. J. (2006). An introduction to the event-related potential technique. Cambridge: The MIT Press.

    Google Scholar 

  51. Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308.

    PubMed  Google Scholar 

  52. Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception & Performance, 20, 1000–1014.

    Google Scholar 

  53. Posner, M. I. (1980). Orienting of attention, the VIIth Sir Frederic Barlett lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.

    PubMed  Google Scholar 

  54. Pratt, J., & McAuliffe, J. (2002). Determining whether attentional control settings are inclusive or exclusive. Perception & Psychophysics, 64, 1361-1370.

    Google Scholar 

  55. Pratt, J., Sekuler, A. B., & McAuliffe, J. (2001). The role of attentional set on attentional cueing and inhibition of return. Visual Cognition, 8, 33-46. doi: https://doi.org/10.1080/13506280042000018

    Article  Google Scholar 

  56. Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception & Psychophysics, 72, 1455-1470. doi: https://doi.org/10.3758/APP.72.6.1455

    Article  Google Scholar 

  57. Schreij, D., Owens, C., & Theeuwes, J. (2008). Abrupt onsets capture attention independent of top-down control settings. Perception & Psychophysics, 70, 208–218.https://doi.org/10.3758/PP.70.2.208

    Article  Google Scholar 

  58. Schreij, D., Theeuwes, J., & Olivers, C. N. L. (2010a) Irrelevant onsets cause inhibition of return regardless of attentional set. Attention, Perception & Psychophysics, 72, 1725-1729. doi: https://doi.org/10.3758/APP.72.7.1725

    Article  Google Scholar 

  59. Schreij, D., Theeuwes, J., & Olivers, C. N. L. (2010b). Abrupt onsets capture attention independent of top-down control settings II: Additivity is no evidence for filtering. Attention, Perception, & Psychophysics, 72, 672–682. doi:https://doi.org/10.3758/APP.72.3.672

    Article  Google Scholar 

  60. Schoeberl, T., Goller, F., & Ansorge, U. (2019). Top-down matching singleton cues have no edge over top-down matching nonsingletons in spatial cueing. Psychonomic Bulletin & Review, 26, 241-249. doi: https://doi.org/10.3758/s13423-018-1499-5

    Article  Google Scholar 

  61. Theeuwes, J. (1992). Perceptual selectivity of color and form. Perception & Psychophysics, 51, 599-606.

    Google Scholar 

  62. Theeuwes, J. (1994). Stimulus-driven attentional capture and attentional set: Selective search for color and abrupt onsets. Journal of Experimental Psychology: Human Perception & Performance, 20, 799-806.

    Google Scholar 

  63. Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65-70. doi: https://doi.org/10.3758/BF03206462

    Article  Google Scholar 

  64. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 123, 77-99.

    Google Scholar 

  65. Theeuwes, J., Atchley, P., & Kramer, A.F. (2000). On the time course of top-down and bottom-up control of visual attention (p. 105-125). In S. Monsell & J. Driver (Eds.). Attention & performance (Vol 18). Cambridge: MIT Press.

  66. Theeuwes, J., & Godijn, R. (2002). Irrelevant singletons capture attention: Evidence from inhibition of return. Perception & Psychophysics, 64, 764-770.

    Google Scholar 

  67. Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9, 379-385.

    Google Scholar 

  68. Turatto, M., & Galfano, G. (2001). Attentional capture by color without any relevant attentional set. Perception & Psychophysics, 63, 286-297.

    Google Scholar 

  69. Turatto, M., Galfano, G., Gardini, S., & Mascetti, G. G. (2004). Stimulus-driven attentional capture: An empirical comparison of display-size and distance methods. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 57A, 297-324.

    Google Scholar 

  70. Wright, R. D., & Ward, L. M. (2008). Orienting of attention. New York: Oxford University Press.

    Google Scholar 

  71. Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional capture (tutorial). In S. Monsell and J. Driver (Eds). Control of cognitive processes: Attention and performance XVIII. (pp. 73 – 103). Cambridge, MA: MIT Press.

    Google Scholar 

  72. Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 25, 661-676.

    Google Scholar 

  73. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception & Performance, 10, 601-621.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bryan R. Burnham.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Public significance

Human attention may be directed toward objects of importance (top-down control) and may be involuntarily drawn toward salient objects (bottom-up processing). Using a new approach to measure the focus of attention, the present study showed that salient but non-important items can be ignored early in visual processing. This study may be important for development of visual displays, computer interfaces, and even video games.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burnham, B.R. Evidence for early top-down modulation of attention to salient visual cues through probe detection. Atten Percept Psychophys 82, 1003–1023 (2020). https://doi.org/10.3758/s13414-019-01850-0

Download citation

Keywords

  • Contingent capture
  • Spatial cuing
  • Stimulus-driven
  • Attentional capture