Attention, Perception, & Psychophysics

, Volume 80, Issue 3, pp 677–690 | Cite as

Salience from multiple feature contrast: Evidence from saccade trajectories

  • Luke Tudge
  • Stephan A. Brandt
  • Torsten Schubert


We used eye tracking to quantify the extent to which combinations of salient contrasts (orientation, luminance, and movement) influence a central salience map that guides eye movements. We found that luminance combined additively with orientation and movement, suggesting that the salience system processes luminance somewhat independently of the two other features. On the other hand, orientation and movement together influenced salience underadditively, suggesting that these two features are processed nonindependently. This pattern of results suggests that the visual system does not sum sources of salience linearly, but treats some sources of salience as redundant.


Eye movements and visual attention Visual perception 



The authors thank Antonia Papadakis, Julia Gerb, and Leonie Richter for their help with data collection. Luke Tudge was supported by the Berlin School of Mind and Brain PhD scholarship.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.CrossRefGoogle Scholar
  2. Al-Aidroos, N. & Pratt, J. (2010). Top-down control in time and space: Evidence from saccadic latencies and trajectories. Visual Cognition, 18, 26-49.CrossRefGoogle Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.CrossRefGoogle Scholar
  4. Belopolsky, A. (2015). Common priority map for selection history, reward and emotion in the oculomotor system. Perception, 44:920-33.CrossRefPubMedGoogle Scholar
  5. D’Zmura, M. (1991). Color in visual search. Vision Research, 31, 951-966.CrossRefPubMedGoogle Scholar
  6. Dick, M., Ullman, S., & Sagi, D. (1987). Parallel and serial processes in motion detection. Science, 237, 400-402.CrossRefPubMedGoogle Scholar
  7. Donk, M. & van Zoest, W. (2008). Effects of salience are short-lived. Psychological Science, 19, 733-739.CrossRefPubMedGoogle Scholar
  8. Engmann, S., Hart, B., Sieren, T., Onat, S., König, P., & Einhäuser, W. (2009). Saliency on a natural scene background: Effects of color and luminance contrast add linearly. Attention, Perception, & Psychophysics, 71, 1337-1352.CrossRefGoogle Scholar
  9. Fischer, B. & Ramsperger, E. (1984). Human express saccades: Extremely short reaction times of goal directed eye movements. Experimental Brain Research, 57, 191-195.CrossRefPubMedGoogle Scholar
  10. Gozli, D. & Deng, W. (2017). Building blocks of psychology: On remaking the unkept promises of early schools. Integrative Psychological and Behavioral Science.
  11. Jonikaitis, D. & Belopolsky, A. (2014). Target-distractor competition in the oculomotor system is spatiotopic. Journal of Neuroscience, 34, 6687-6691.CrossRefPubMedGoogle Scholar
  12. Kastner, S., Nothdurft, H.-C., & Pigarev, I. (1999). Neuronal responses to orientation and motion contrast in cat striate cortex. Visual Neuroscience, 16, 587-600.CrossRefPubMedGoogle Scholar
  13. Kerzel, D., Schönhammer, J., Burra, N., Born, S., & Souto, D. (2011). Saliency changes appearance. PloS ONE, 6, e28292.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Koch, C. & Ullman, S. (1985). Shifts in visual attention: Towards the underlying circuitry. Human Neurobiology, 4, 219-222.PubMedGoogle Scholar
  15. Koene, A. & Zhaoping, L. (2007). Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom-up saliency map in V1. Journal of Vision, 7:6.1-14Google Scholar
  16. Kuznetsova, A., Brockhoff, P., & Christensen, R. (2016). lmerTest: Tests in linear mixed effects models.
  17. Mante, V., Frazor, R., Bonin, V., Geisler, W., & Carandini, M. (2005). Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neuroscience, 8, 1690-1697.CrossRefPubMedGoogle Scholar
  18. McPeek, R., Han, J., & Keller, E. (2003). Competition between saccade goals in the superior colliculus produces saccade curvature. Journal of Neurophysiology, 89, 2577-2590.CrossRefPubMedGoogle Scholar
  19. McPeek, R., & Keller, E. (2001). Short-term priming, concurrent processing, and saccade curvature during a target selection task in the monkey. Vision Research, 41, 785-800.CrossRefPubMedGoogle Scholar
  20. McSorley, E., Cruickshank, A., & Inman, L. (2009). The development of the spatial extent of oculomotor inhibition. Brain Research, 1298, 92-98.CrossRefPubMedGoogle Scholar
  21. McSorley, E., Haggard, P., & Walker, R. (2006). Time course of oculomotor inhibition revealed by saccade trajectory modulation. Journal of Neurophysiology, 96. 1420-1424.CrossRefPubMedGoogle Scholar
  22. Nagy, A., & Sanchez, R. (1990). Critical color differences determined with a visual search task. Journal of the Optical Society of America, A, 7, 1209-1217.CrossRefGoogle Scholar
  23. Nothdurft, H.-C. (1991). Texture segmentation and pop-out from orientation contrast. Vision Research, 31, 1073–1078.CrossRefPubMedGoogle Scholar
  24. Nothdurft, H.-C. (1992). Feature analysis and the role of similarity in pre-attentive vision. Perception and Psychophysics, 52, 355 –375.CrossRefPubMedGoogle Scholar
  25. Nothdurft, H.-C. (1993). The role of features in preattentive vision: Comparison of orientation, motion, and color cues. Vision Research, 33, 1937–1958CrossRefPubMedGoogle Scholar
  26. Nothdurft, H.-C. (2000). Salience from feature contrast: Additivity across dimensions. Vision Research, 40, 1183-1201.CrossRefPubMedGoogle Scholar
  27. Nyström, M. & Holmqvist, K. (2010). An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behavior Research Methods, 42, 188-204.CrossRefPubMedGoogle Scholar
  28. Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42, 107-123.CrossRefPubMedGoogle Scholar
  29. Poirier, F., Gosselin, F., & Arguin, M. (2008). Perceptive fields of saliency. Journal of Vision, 8, 1-19.CrossRefPubMedGoogle Scholar
  30. Pomerantz, J. & Portillo, M. (2011). Grouping and emergent features in vision: Toward a theory of basic Gestalts. Journal of Experimental Psychology: Human Perception and Performance, 37, 1331-1349.PubMedGoogle Scholar
  31. Port, N., & Wurtz, R. (2003). Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades. Journal of Neurophysiology, 90, 1887-1903.CrossRefPubMedGoogle Scholar
  32. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  33. Raftery, A. (1999). Bayes factors and BIC: Comment on ‘A critique of the Bayesian Information Criterion for model selection’. Sociological Methods and Research, 27, 411-427.CrossRefGoogle Scholar
  34. Ruderman, D. (1994). The statistics of natural images. Network: Computation in Neural Systems, 5, 517-548.CrossRefGoogle Scholar
  35. Saslow, M. (1967). Effects of components of displacement-step stimuli upon latency for saccadic eye movement. Journal of the Optical Society of America, 57, 1024-1029.CrossRefPubMedGoogle Scholar
  36. Satterthwaite, F. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2, 110-114.CrossRefPubMedGoogle Scholar
  37. Schütz, A., Trommershäuser, J., & Gegenfurtner, K. (2012). Dynamic integration of information about salience and value for saccadic eye movements. Proceedings of the National Academy of Sciences, 109, 7547-7552.CrossRefGoogle Scholar
  38. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.CrossRefGoogle Scholar
  39. Smeets, J., & Hooge, I. (2003). Nature of variability in saccades. Journal of Neurophysiology, 90, 12-20.CrossRefPubMedGoogle Scholar
  40. Treue, S. (2003). Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology, 13, 428-432.CrossRefPubMedGoogle Scholar
  41. Tudge, L., McSorley, E., Brandt, S.A., & Schubert, T. (2017). Setting things straight: A comparison of measures of saccade trajectory deviation. Behavior Research Methods, 49, 2127-2145.CrossRefPubMedGoogle Scholar
  42. Tudge, L. & Schubert, T. (2016). Accessory stimuli speed reaction times and reduce distraction in a target-distractor task. Journal of Vision, 16, 1-11.CrossRefGoogle Scholar
  43. Underwood, G., Foulsham, T., van Loon, E., Humphreys, L., & Bloyce, J. (2006). Eye movement during scene inspection: A test of the saliency map hypothesis. European Journal of Cognitive Psychology, 18, 321-342.CrossRefGoogle Scholar
  44. Van der Stigchel, S. (2010). Recent advances in the study of saccade trajectory deviations. Vision Research, 50, 1619-1627.CrossRefPubMedGoogle Scholar
  45. Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience & Biobehavioral Reviews, 30, 666-679.CrossRefGoogle Scholar
  46. van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30, 746–759.PubMedGoogle Scholar
  47. van Zoest, W., Donk, M., & Van der Stigchel, S. (2012). Stimulus salience and the time course of saccade trajectory deviations. Journal of Vision, 12, 1-13.Google Scholar
  48. van Zoest, W., Heimler, B., & Pavani, F. (2017). The oculomotor salience of flicker, apparent motion and continuous motion in saccade trajectories. Experimental Brain Research, 235, 181-191.CrossRefPubMedGoogle Scholar
  49. Walker, R., & McSorley, E. (2008). The influence of distractors on saccade-target selection: Saccade trajectory effects. Journal of Eye Movement Research, 2, 1-13.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Luke Tudge
    • 1
    • 2
    • 3
  • Stephan A. Brandt
    • 4
  • Torsten Schubert
    • 1
    • 3
  1. 1.Institut für PsychologieHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Institute of PsychologyMartin Luther University Halle-WittenbergHalleGermany
  4. 4.Charité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations