Motor content norms for 4,565 verbs in Spanish

  • Romina A. San Miguel Abella
  • María González-NostiEmail author


Embodiment theory suggests that, during the processing of words related to movement, as in the case of action verbs, somatotopic activation is produced in the motor and premotor cortices. In the same way, some studies have demonstrated that patients with frontal-lobe damage, such as Parkinson’s patients, have difficulties processing that kind of stimulus. At the moment, no standardized data exist concerning the motor content of Spanish verbs. Therefore, the aim of the present research was to develop a database of 4,565 verbs in Spanish through a survey filled out by 152 university students. The value for the motor content was obtained by calculating the average value from the answers of the participants. In addition, the reliability of the results was estimated, as well as their convergent validity, using diverse correlation coefficients. The database and the raw responses of the participants can be downloaded from this website:


Motor content Verbs Database Norms 


Supplementary material

13428_2019_1241_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2126 kb)


  1. Alonso, M. A., Díez, E., & Fernandez, A. (2016). Subjective age-of-acquisition norms for 4,640 verbs in Spanish. Behavior Research Methods, 48, 1337–1342. doi: CrossRefGoogle Scholar
  2. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16, 1818–1823. doi: CrossRefGoogle Scholar
  3. Bak, T. H., & Hodges, J. R. (2004). The effects of motor neurone disease on language: Further evidence. Brain and Language, 89, 354–361.CrossRefGoogle Scholar
  4. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609, disc. 609–660. doi: Google Scholar
  5. Barsalou, L. W. (2008). Cognitive and neural contributions to understanding the conceptual system. Current Directions in Psychological Science, 17, 91–95.CrossRefGoogle Scholar
  6. Bayram, E., Muhittin, C., & Akbostanci, C. (2018). Verb naming fluency in hypokinetic and hyperkinetic movement disorders. Cortex, 100, 21–31.CrossRefGoogle Scholar
  7. Bien, S., Jost, K., Khader, P. H., Mertens, M., & Rösler, F. (2009). Neural correlates of generating visual nouns and motor verbs in a minimal phrase context. Brain Research, 8, 122–132.Google Scholar
  8. Bloxham, C. A., Dick, D. J., & Moore, M. (1987). Reaction times and attention in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 11978–11983.CrossRefGoogle Scholar
  9. Boulenger, V., Hauk, O., & Pulvermüller, F. (2009). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19, 1905–1914.CrossRefGoogle Scholar
  10. Brass, M., Friederici, A. S., & Rüschemeyer, S. A. (2007). Comprehending prehending: Neural correlates of processing verbs with motor stems. Journal of Cognitive Neuroscience, 19, 855–865.CrossRefGoogle Scholar
  11. Cotelli, M., Borroni, B., Manenti, R., Alberici, A., Calabria, M., Agosti, C., . . . Cappa, S. F. (2006). Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology, 20, 558–565.Google Scholar
  12. Cousins, K. A. Q., Ash, S., & Grossman, M. (2018). Production of verbs related to body movement in amyotrophic lateral sclerosis (ALS) and Parkinson’s Disease (PD). Cortex, 100, 127–139.CrossRefGoogle Scholar
  13. Cuetos, F., & Herrera, E. (2013). Semantic disturbance for verbs in Parkinson’s disease patients off medication. Journal of Neurolinguistics, 26, 737–744.CrossRefGoogle Scholar
  14. Damasio, A., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences, 90, 4957–4960.CrossRefGoogle Scholar
  15. de Zubicaray, G., Arciuli, J., & McMahon, K. (2013). Putting an “end” to the motor cortex representations of action words. Journal of Cognitive Neuroscience, 25, 1957–1974. doi: CrossRefGoogle Scholar
  16. Druks, J. (2002). Verbs and nouns—A review of the literature. Journal of Neurolinguistics, 15, 289–315.CrossRefGoogle Scholar
  17. Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013) EsPal: One-stop Shopping for Spanish Word Properties. Behavior Research Methods, 45, 1246–1258. doi: CrossRefGoogle Scholar
  18. Fernandino, L., Conant, L., Binder, J., Blindauer, K., Hiner, B., Spangler, K., & Desai, R. (2013). Parkinson’s disease disrupts both automatic and controlled processing of action verbs. Brain and Language, 127, 65–74.CrossRefGoogle Scholar
  19. Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Motor and cognitive functions of the ventral. Current Opinion in Neurobiology, 12, 149–154.Google Scholar
  20. Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307. doi: CrossRefGoogle Scholar
  21. Herrera, E., Bermúdez-Margaretto, B., Ribacoba, R., & Cuetos, F. (2015). The motor–semantic meanings of verbs generated by Parkinson’s disease patients on/off dopamine medication in a verbal fluency task. Journal of Neurolinguistics, 36, 72–78.CrossRefGoogle Scholar
  22. Herrera, E., & Cuetos, F. (2012). Action naming in Parkinson’s disease patients on/off dopamine. Neuroscience letters, 513, 219–222.CrossRefGoogle Scholar
  23. Herrera, E., Rodríguez-Ferreiro, J., & Cuetos, F. (2012). The effect of motion content in action naming by Parkinson’s disease patients. Cortex, 48, 900–904. doi: CrossRefGoogle Scholar
  24. Hornykiewicz, O., & Kish, S. J. (1984). Neurochemical basis of dementia in Parkinson’s disease. Journal Canadien des Sciences Neurologiques, 11, 185–190.CrossRefGoogle Scholar
  25. Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102, 59–70. doi: Google Scholar
  26. Mahon, B. Z., & Hickok, G. (2016). Arguments about the nature of concepts: Symbols, embodiment, and beyond. Psychonomic Bulletin & Review, 23, 941–958. doi: CrossRefGoogle Scholar
  27. Miller Koop, M., Hill, B. C., & Bronte-Stewart, H. M. (2013). Perceptual errors increase with movement duration and may contribute to hypokinesia in Parkinson’s disease. Neuroscience, 243, 1–13. doi: CrossRefGoogle Scholar
  28. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255–287.CrossRefGoogle Scholar
  29. Pita-Fernández, S., Pértega-Díaz, S., & Rodríguez Maseda, E. (2003). La fiabilidad de las mediciones clínicas: El análisis de concordancia para variables numéricas. Cadernos de Atención Primaria, 10, 290–296.Google Scholar
  30. Rodríguez-Ferreiro, J., Gennari, S. P., Davies, R., & Cuetos, F. (2011). Neural correlates of abstract verb processing. Journal of Cognitive Neuroscience, 23, 106–118. doi: CrossRefGoogle Scholar
  31. Silveri, M. C., & Ciccarelli, N. (2007). The deficit for the word-class “verb” in corticobasal degeneration: Linguistic expression of the movement disorder? Neuropsychologia, 45, 2570–2579.CrossRefGoogle Scholar
  32. Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: A review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience & Biobehavioral Reviews, 35, 407–426. doi: CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Romina A. San Miguel Abella
    • 1
  • María González-Nosti
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of OviedoOviedoSpain

Personalised recommendations