Advertisement

CHAP: Open-source software for processing and analyzing pupillometry data

  • Ronen HershmanEmail author
  • Avishai Henik
  • Noga Cohen
Article

Abstract

Pupil dilation is an effective indicator of cognitive and affective processes. Although several eyetracker systems on the market can provide effective solutions for pupil dilation measurement, there is a lack of tools for processing and analyzing the data provided by these systems. For this reason, we developed CHAP: open-source software written in MATLAB. This software provides a user-friendly graphical user interface for processing and analyzing pupillometry data. Our software creates uniform conventions for the preprocessing and analysis of pupillometry data and provides a quick and easy-to-use tool for researchers interested in pupillometry. To download CHAP or join our mailing list, please visit CHAP’s website: http://in.bgu.ac.il/en/Labs/CNL/chap.

Keywords

Pupillometry GUI Open-source code Bayesian analysis MATLAB 

Notes

References

  1. Akdoğan, B., Balcı, F., & van Rijn, H. (2016). Temporal expectation indexed by pupillary response. Timing & Time Perception, 4, 354–370. doi: https://doi.org/10.1163/22134468-00002075
  2. Barbur, J. L., Harlow, A. J., & Sahraie, A. (2007). Pupillary responses to stimulus structure, colour and movement. Ophthalmic and Physiological Optics, 12, 137–141. doi: https://doi.org/10.1111/j.1475-1313.1992.tb00276.x CrossRefGoogle Scholar
  3. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292. doi: https://doi.org/10.1037/0033-2909.91.2.276 CrossRefGoogle Scholar
  4. Beatty, J., & Kahneman, D. (1966). Pupillary changes in two memory tasks. Psychonomic Science, 5, 371–372. doi: https://doi.org/10.3758/BF03328444 CrossRefGoogle Scholar
  5. Binda, P., & Murray, S. O. (2015). Spatial attention increases the pupillary response to light changes. Journal of Vision, 15(2), 1. doi: https://doi.org/10.1167/15.2.1 CrossRefGoogle Scholar
  6. Binda, P., Pereverzeva, M., & Murray, S. O. (2014). Pupil size reflects the focus of feature-based attention. Journal of Neurophysiology, 112, 3046–3052. doi: https://doi.org/10.1152/jn.00502.2014 CrossRefGoogle Scholar
  7. Binda, P., Straßer, T., Stingl, K., Richter, P., Peters, T., Wilhelm, H., . . . Kelbsch, C. (2017). Pupil response components: attention-light interaction in patients with Parinaud’s syndrome. Scientific Reports, 7, 10283. doi: https://doi.org/10.1038/s41598-017-10816-x
  8. Bitsios, P., Szabadi, E., & Bradshaw, C. . (2004). The fear-inhibited light reflex: Importance of the anticipation of an aversive event. International Journal of Psychophysiology, 52, 87–95. doi: https://doi.org/10.1016/J.IJPSYCHO.2003.12.006 CrossRefGoogle Scholar
  9. Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the autism spectrum disorder (ASD) advantage in visual tasks. doi: https://doi.org/10.1038/srep04301
  10. Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45, 602–607. doi: https://doi.org/10.1111/j.1469-8986.2008.00654.x CrossRefGoogle Scholar
  11. Braem, S., Coenen, E., Bombeke, K., van Bochove, M. E., & Notebaert, W. (2015). Open your eyes for prediction errors. Cognitive, Affective, & Behavioral Neuroscience, 15, 374–380. doi: https://doi.org/10.3758/s13415-014-0333-4 CrossRefGoogle Scholar
  12. Breeden, A. L., Siegle, G. J., Norr, M. E., Gordon, E. M., & Vaidya, C. J. (2017). Coupling between spontaneous pupillary fluctuations and brain activity relates to inattentiveness. European Journal of Neuroscience, 45, 260–266. doi: https://doi.org/10.1111/ejn.13424 CrossRefGoogle Scholar
  13. Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behavior Research Methods, 45, 1322–1331. doi: https://doi.org/10.3758/s13428-013-0327-0 CrossRefGoogle Scholar
  14. Cohen, N., Moyal, N., & Henik, A. (2015). Executive control suppresses pupillary responses to aversive stimuli. Biological Psychology, 112, 1–11. doi: https://doi.org/10.1016/j.biopsycho.2015.09.006 CrossRefGoogle Scholar
  15. Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2014). PyGaze: An open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments. Behavior Research Methods, 46, 913–921. doi: https://doi.org/10.3758/s13428-013-0422-2 CrossRefGoogle Scholar
  16. de Gee, J. W., Knapen, T., & Donner, T. H. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proceedings of the National Academy of Sciences, 111, E618–E625. doi: https://doi.org/10.1073/pnas.1317557111 CrossRefGoogle Scholar
  17. Diede, N. T., & Bugg, J. M. (2017). Cognitive effort is modulated outside of the explicit awareness of conflict frequency: Evidence from pupillometry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 824–835. doi: https://doi.org/10.1037/xlm0000349 Google Scholar
  18. Einhäuser, W., Koch, C., & Carter, O. L. (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 4, 18. doi: https://doi.org/10.3389/fnhum.2010.00018 Google Scholar
  19. Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences, 105, 1704–1709. doi: https://doi.org/10.1073/pnas.0707727105 CrossRefGoogle Scholar
  20. Feigl, B., Zele, A. J., Fader, S. M., Howes, A. N., Hughes, C. E., Jones, K. A., & Jones, R. (2012). The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmologica, 90, e230–e234. doi: https://doi.org/10.1111/j.1755-3768.2011.02226.x CrossRefGoogle Scholar
  21. Gagl, B., Hawelka, S., & Hutzler, F. (2011). Systematic influence of gaze position on pupil size measurement: Analysis and correction. Behavior Research Methods, 43, 1171–1181. doi: https://doi.org/10.3758/s13428-011-0109-5 CrossRefGoogle Scholar
  22. Geva, R., Zivan, M., Warsha, A., & Olchik, D. (2013). Alerting, orienting or executive attention networks: Differential patters of pupil dilations. Frontiers in Behavioral Neuroscience, 7, 145. doi: https://doi.org/10.3389/fnbeh.2013.00145 CrossRefGoogle Scholar
  23. Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21, 90–95. doi: https://doi.org/10.1177/0963721412436811 CrossRefGoogle Scholar
  24. Graham, F. K. (1975). Presidential Address, 1974: The more or less startling effects of weak prestimulation. Psychophysiology, 12, 238–348. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1153628 CrossRefGoogle Scholar
  25. Hemmati, M. (2017). A study on the visual illusion effects on the pupillary aperture (Doctoral dissertation). Retrieved from http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8900434&fileOId=8900438
  26. Henderson, R. R., Bradley, M. M., & Lang, P. J. (2014). Modulation of the initial light reflex during affective picture viewing. Psychophysiology, 51, 815–818. doi: https://doi.org/10.1111/psyp.12236 CrossRefGoogle Scholar
  27. Hershman, R., Henik, A., & Cohen, N. (2018). A novel blink detection method based on pupillometry noise. Behavior Research Methods, 50: 107. doi: https://doi.org/10.3758/s13428-017-1008-1 CrossRefGoogle Scholar
  28. Hershman, R., & Henik, A. (2019). Dissociation between reaction time and pupil dilation in the Stroop task. Journal of Experimental Psychology: Learning, Memory, and Cognition.  https://doi.org/10.1037/xlm0000690
  29. Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. Science, 132, 349–350. doi: https://doi.org/10.1126/science.132.3423.349 CrossRefGoogle Scholar
  30. Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 1190–1192. doi: https://doi.org/10.1126/science.143.3611.1190 CrossRefGoogle Scholar
  31. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press, Clarendon Press.Google Scholar
  32. Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function—A review. Neuroscience & Biobehavioral Reviews, 71, 58–82. doi: https://doi.org/10.1016/j.neubiorev.2016.08.020 CrossRefGoogle Scholar
  33. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585. doi: https://doi.org/10.1126/science.154.3756 CrossRefGoogle Scholar
  34. Kang, O., & Wheatley, T. (2015). Pupil dilation patterns reflect the contents of consciousness. Consciousness and Cognition, 35, 128–135. doi: https://doi.org/10.1016/j.concog.2015.05.001 CrossRefGoogle Scholar
  35. Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106, 643–653. doi: https://doi.org/10.1093/brain/106.3.643 CrossRefGoogle Scholar
  36. Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90, 773–795. doi: https://doi.org/10.1080/01621459.1995.10476572 CrossRefGoogle Scholar
  37. Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology, 48, 323–332. doi: https://doi.org/10.1111/j.1469-8986.2010.01069.x CrossRefGoogle Scholar
  38. Kloosterman, N. A., Meindertsma, T., van Loon, A. M., Lamme, V. A. F., Bonneh, Y. S., & Donner, T. H. (2015). Pupil size tracks perceptual content and surprise. European Journal of Neuroscience, 41, 1068–1078. doi: https://doi.org/10.1111/ejn.12859 CrossRefGoogle Scholar
  39. Koelewijn, T., de Kluiver, H., Shinn-Cunningham, B. G., Zekveld, A. A., & Kramer, S. E. (2015). The pupil response reveals increased listening effort when it is difficult to focus attention. Hearing Research, 323, 81–90. doi: https://doi.org/10.1016/J.HEARES.2015.02.004 CrossRefGoogle Scholar
  40. Kostic, C., Crippa, S. V., Martin, C., Kardon, R. H., Biel, M., Arsenijevic, Y., & Kawasaki, A. (2016). Determination of rod and cone influence to the early and late dynamic of the pupillary light response. Investigative Opthalmology and Visual Science, 57, 2501–2508. doi: https://doi.org/10.1167/iovs.16-19150 CrossRefGoogle Scholar
  41. Kret, M. E., & Sjak-Shie, E. E. (2018). Preprocessing pupil size data: Guidelines and code. Behavior Research Methods, 1–7. doi: https://doi.org/10.3758/s13428-018-1075-y
  42. Kuchinke, L., Võ, M. L.-H., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65, 132–140. doi: https://doi.org/10.1016/J.IJPSYCHO.2007.04.004 CrossRefGoogle Scholar
  43. Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary Stroop effects. Cognitive Processing, 12, 13–21. doi: https://doi.org/10.1007/s10339-010-0370-z CrossRefGoogle Scholar
  44. Lanting, P., Strijers, R. L. M., Bos, J. E., Faes, T. J. C., & Heimans, J. J. (1991). The cause of increased pupillary light reflex latencies in diabetic patients: the relationship between pupillary light reflex and visual evoked potential latencies. Electroencephalography and Clinical Neurophysiology, 78, 111–115. doi: https://doi.org/10.1016/0013-4694(91)90110-P CrossRefGoogle Scholar
  45. Li, C. (2017). Extracting and visualizing data from mobile and static eye trackers in R and Matlab (Doctoral dissertation). Retrieved from https://digitalcommons.usu.edu/etd/6880
  46. Mathôt, S. (2013). A simple way to reconstruct pupil size during eye blinks (Unpublished manuscript). Retrieved from doi: https://doi.org/10.6084/m9.figshare.688001
  47. Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1, 16. doi: https://doi.org/10.5334/joc.18 CrossRefGoogle Scholar
  48. Mathôt, S., Fabius, J., Van Heusden, E., & Van der Stigchel, S. (2018). Safe and sensible preprocessing and baseline correction of pupil-size data. Behavior Research Methods, 50, 94–106. doi: https://doi.org/10.3758/s13428-017-1007-2 CrossRefGoogle Scholar
  49. Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PLoS ONE, 8, e78168. doi: https://doi.org/10.1371/journal.pone.0078168 CrossRefGoogle Scholar
  50. McDougal, D. H., & Gamlin, P. D. (2010). The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 50, 72–87. doi: https://doi.org/10.1016/J.VISRES.2009.10.012 CrossRefGoogle Scholar
  51. Monster, A. W., Chan, H. C., & O’Connor, D. (1978). Long-term trends in human eye blink rate. Biotelemetry and Patient Monitoring, 5, 206–222. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/754827 Google Scholar
  52. Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014a). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35, 4140–4154. doi: https://doi.org/10.1002/hbm.22466 CrossRefGoogle Scholar
  53. Murphy, P. R., Vandekerckhove, J., & Nieuwenhuis, S. (2014b). Pupil-linked arousal determines variability in perceptual decision making. PLoS Computational Biology, 10, e1003854. doi: https://doi.org/10.1371/journal.pcbi.1003854 CrossRefGoogle Scholar
  54. Naber, M., & Nakayama, K. (2013). Pupil responses to high-level image content. Journal of Vision, 13(6), 7. doi: https://doi.org/10.1167/13.6.7
  55. Nyström, M., Andersson, R., Holmqvist, K., & van de Weijer, J. (2013). The influence of calibration method and eye physiology on eyetracking data quality. Behavior Research Methods, 45, 272–288. doi: https://doi.org/10.3758/s13428-012-0247-4 CrossRefGoogle Scholar
  56. Otero, S. C., Weekes, B. S., & Hutton, S. B. (2011). Pupil size changes during recognition memory. Psychophysiology, 48, 1346–1353. doi: https://doi.org/10.1111/j.1469-8986.2011.01217.x CrossRefGoogle Scholar
  57. Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human–Computer Studies, 59, 185–198. doi: https://doi.org/10.1016/S1071-5819(03)00017-X CrossRefGoogle Scholar
  58. Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8–13. doi: https://doi.org/10.1016/J.JNEUMETH.2006.11.017 CrossRefGoogle Scholar
  59. Phillips, M. A., Szabadi, E., & Bradshaw, C. M. (2001). Comparison of the effects of clonidine and yohimbine on pupillary diameter at different illumination levels. British Journal of Clinical Pharmacology, 50, 65–68. doi: https://doi.org/10.1046/j.1365-2125.2000.00225.x CrossRefGoogle Scholar
  60. Preuschoff, K., ‘t Hart, B. M., & Einhäuser, W. (2011). Pupil dilation signals surprise: Evidence for noradrenaline’s role in decision making. Frontiers in Neuroscience, 5, 115. doi: https://doi.org/10.3389/fnins.2011.00115
  61. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. doi: https://doi.org/10.1016/J.JMP.2012.08.001 CrossRefGoogle Scholar
  62. Schmidtke, J. (2014). Second language experience modulates word retrieval effort in bilinguals: Evidence from pupillometry. Frontiers in Psychology, 5, 137. doi: https://doi.org/10.3389/fpsyg.2014.00137 Google Scholar
  63. Shah, S. S., Kurup, S. P., Ralay Ranaivo, H., Mets-Halgrimson, R. B., & Mets, M. B. (2018). Ophthalmic genetics pupillary manifestations of Marfan syndrome: From the Marfan eye consortium of Chicago. Ophthalmic Genetics, 39, 297–299. doi: https://doi.org/10.1080/13816810.2018.1424207 CrossRefGoogle Scholar
  64. Siegle, G. J., Steinhauer, S. R., Carter, C. S., Ramel, W., & Thase, M. E. (2003). Do the seconds turn into hours? Relationships between sustained pupil dilation in response to emotional information and self-reported rumination. Cognitive Therapy and Research, 27, 365–382. doi: https://doi.org/10.1023/A:1023974602357 CrossRefGoogle Scholar
  65. Siegle, G. J., Steinhauer, S. R., & Thase, M. E. (2004). Pupillary assessment and computational modeling of the Stroop task in depression. International Journal of Psychophysiology, 52, 63–76. doi: https://doi.org/10.1016/J.IJPSYCHO.2003.12.010 CrossRefGoogle Scholar
  66. Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S., Mrazek, M. D., . . . Schooler, J. W. (2011). Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE, 6, e18298. doi: https://doi.org/10.1371/journal.pone.0018298
  67. Snell, J., Mathôt, S., Mirault, J., & Grainger, J. (2018). Parallel graded attention in reading: A pupillometric study. Scientific Reports, 8, 3743. doi: https://doi.org/10.1038/s41598-018-22138-7 CrossRefGoogle Scholar
  68. Sogo, H. (2013). GazeParser: An open-source and multiplatform library for low-cost eye tracking and analysis. Behavior Research Methods, 45, 684–695. doi: https://doi.org/10.3758/s13428-012-0286-x CrossRefGoogle Scholar
  69. Steinhauer, S. R., Condray, R., & Kasparek, A. (2000). Cognitive modulation of midbrain function: Task-induced reduction of the pupillary light reflex. International Journal of Psychophysiology, 39, 21–30. doi: https://doi.org/10.1016/S0167-8760(00)00119-7 CrossRefGoogle Scholar
  70. Steinhauer, S. R., Siegle, G. J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52, 77–86. doi: https://doi.org/10.1016/J.IJPSYCHO.2003.12.005 CrossRefGoogle Scholar
  71. Titz, J., Scholz, A., & Sedlmeier, P. (2018). Comparing eye trackers by correlating their eye-metric data. Behavior Research Methods, 50, 1853–1863. doi: https://doi.org/10.3758/s13428-017-0954-y CrossRefGoogle Scholar
  72. Turi, M., Burr, D. C., & Binda, P. (2018). Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. eLife, 7, 32399. doi: https://doi.org/10.7554/eLife.32399 CrossRefGoogle Scholar
  73. Unsworth, N., & Robison, M. K. (2017). The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 1962–1987. doi: https://doi.org/10.1037/xlm0000421 Google Scholar
  74. van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25, 2005–2015. doi: https://doi.org/10.3758/s13423-018-1432-y CrossRefGoogle Scholar
  75. van Steenbergen, H., & Band, G. P. H. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215. doi: https://doi.org/10.3389/fnhum.2013.00215 Google Scholar
  76. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2011). Threat but not arousal narrows attention: Evidence from pupil dilation and saccade control. Frontiers in Psychology, 2, 281. doi: https://doi.org/10.3389/fpsyg.2011.00281 Google Scholar
  77. Wainstein, G., Rojas-Líbano, D., Crossley, N. A., Carrasco, X., Aboitiz, F., & Ossandón, T. (2017). Pupil size tracks attentional performance in attention-deficit/hyperactivity disorder. Scientific Reports, 7, 8228. doi: https://doi.org/10.1038/s41598-017-08246-w CrossRefGoogle Scholar
  78. Wang, C.-A., Brien, D. C., & Munoz, D. P. (2015). Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. European Journal of Neuroscience, 41, 1102–1110. doi: https://doi.org/10.1111/ejn.12883 CrossRefGoogle Scholar
  79. Wang, C.-A., McInnis, H., Brien, D. C., Pari, G., & Munoz, D. P. (2016). Disruption of pupil size modulation correlates with voluntary motor preparation deficits in Parkinson’s disease. Neuropsychologia, 80, 176–184. doi: https://doi.org/10.1016/j.neuropsychologia.2015.11.019 CrossRefGoogle Scholar
  80. Wilhelm, B. J., Wilhelm, H., Moro, S., & Barbur, J. L. (2002). Pupil response components: Studies in patients with Parinaud’s syndrome. Brain, 125, 2296–2307.CrossRefGoogle Scholar
  81. Yellin, D., Berkovich-Ohana, A., & Malach, R. (2015). Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. NeuroImage, 106, 414–427. doi: https://doi.org/10.1016/J.NEUROIMAGE.2014.11.034 CrossRefGoogle Scholar
  82. Zhegallo, A. V., & Marmalyuk, P. A. (2015). ETRAN—R extension package for eye tracking results analysis. Perception, 44, 1129–1135. doi: https://doi.org/10.1177/0301006615594944 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Cognitive and Brain SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Department of PsychologyBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Department of Special EducationUniversity of HaifaHaifaIsrael
  5. 5.The Edmond J. Safra Brain Research Center for the Study of Learning DisabilitiesUniversity of HaifaHaifaIsrael

Personalised recommendations