Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theta band behavioral fluctuations synchronized interpersonally during cooperation

  • 60 Accesses

Abstract

Human behavior fluctuates. A growing body of evidence has demonstrated that behavioral performance in perception fluctuates rhythmically, with dynamics closely resembling spectral features of neural oscillations. However, it is unclear whether the behavioral fluctuations in a complex cooperation context can also express similar rhythmic features, and, more importantly, whether these behavioral rhythms are synchronized among co-actors in a neurophysiologically relevant manner. To answer these questions, we applied a time-resolved approach, previously used for probing individual-level behavioral oscillations in perception, in a complex social interaction context, and further probed dyad-level behavioral synchrony. Twenty pairs of male participants completed, in dyad, joint-action tasks with cooperation or competition demand. We extracted behavioral rhythms from ongoing cooperative performance and measured behavioral synchrony by computing the phase coherence of these behavioral rhythms between dyad members. Despite the absence of significant behavioral oscillations in individuals’ amplitude spectrum, we observed enhanced theta-band phase coherence between co-actors’ behavioral rhythms during cooperation compared to competition conditions. These results indicate that cooperative behaviors of co-actors fluctuated synchronously within the theta band, providing a behavioral counterpart of theta-band interbrain synchrony in cooperation reported in previous hyperscanning studies. Furthermore, the observed behavioral synchrony could be used as a sensitive predictor of cooperation pattern, as evidenced by its significant correlation with leader-follower relationship during cooperation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Benedetto, A., & Morrone, M. C. (2017). Saccadic suppression is embedded within extended oscillatory modulation of sensitivity. The Journal of Neuroscience 37, 3661-3670. doi: https://doi.org/10.1523/jneurosci.2390-16.2016

  2. Billeke, P., Zamorano, F., Cosmelli, D., & Aboitiz, F. (2012). Oscillatory brain activity correlates with risk perception and predicts social decisions. Cerebral Cortex, 23, 2872-2883. doi: https://doi.org/10.1093/cercor/bhs269

  3. Bollimunta, A., Mo, J., Schroeder, C. E., & Ding, M. (2011). Neuronal mechanisms and attentional modulation of corticothalamic α oscillations. The Journal of Neuroscience 31, 4935-4943. doi: https://doi.org/10.1523/JNEUROSCI.5580-10.2011

  4. Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences 18, 414-421. doi: https://doi.org/10.1016/j.tics.2014.04.012

  5. Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. Neuroimage, 49, 3198-3209. doi: https://doi.org/10.1016/j.neuroimage.2009.11.080

  6. Chauvigné, L. A. S., Walton, A., Richardson, M. J., & Brown, S. (2019). Multi-person and multisensory synchronization during group dancing. Human Movement Science, 63, 199-208. doi: https://doi.org/10.1016/j.humov.2018.12.005

  7. Cheng, X., Li, X., & Hu, Y. (2015). Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Human Brain Mapping, 36, 2039-2048. doi: https://doi.org/10.1002/hbm.22754

  8. Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage, 59, 2430-2437. doi: https://doi.org/10.1016/j.neuroimage.2011.09.003

  9. Cuijpers, L. S., Den Hartigh, R. J. R., Zaal, F. T. J. M., & de Poel, H. J. (2019). Rowing together: Interpersonal coordination dynamics with and without mechanical coupling. Human Movement Science, 64, 38-46. doi: https://doi.org/10.1016/j.humov.2018.12.008

  10. de Cheveigné, A., & Arzounian, D. (2018). Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data. Neuroimage, 172, 903-912. doi: https://doi.org/10.1016/j.neuroimage.2018.01.035

  11. Fairhurst, M. T., Janata, P., & Keller, P. E. (2014). Leading the follower: An fMRI investigation of dynamic cooperativity and leader–follower strategies in synchronization with an adaptive virtual partner. Neuroimage, 84, 688-697. doi: https://doi.org/10.1016/j.neuroimage.2013.09.027

  12. Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention. Trends in Cognitive Sciences 23, 87-101. doi: https://doi.org/10.1016/j.tics.2018.11.009

  13. Fiebelkorn, I. C., Saalmann, Yuri B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23, 2553-2558. doi: https://doi.org/10.1016/j.cub.2013.10.063

  14. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870-878. doi: https://doi.org/10.1006/nimg.2001.1037

  15. Ho, H. T., Leung, J., Burr, D. C., Alais, D., & Morrone, M. C. (2017). Auditory sensitivity and decision criteria oscillate at different frequencies separately for the two ears. Current Biology, 27, 3643-3649.e3643. doi: https://doi.org/10.1016/j.cub.2017.10.017

  16. Ho, H. T., Burr, D. C., Alais, D., & Morrone, M. C. (2019). Auditory perceptual history is propagated through alpha oscillations. Current Biology. doi: https://doi.org/10.1016/j.cub.2019.10.041

  17. Hu, Y., Pan, Y., Shi, X., Cai, Q., Li, X., & Cheng, X. (2018). Inter-brain synchrony and cooperation context in interactive decision making. Biological Psychology, 133, 54-62. doi: https://doi.org/10.1016/j.biopsycho.2017.12.005

  18. Huang, Y., Chen, L., & Luo, H. (2015). Behavioral oscillation in priming: Competing perceptual predictions conveyed in alternating theta-band rhythms. The Journal of Neuroscience 35, 2830-2837. doi: https://doi.org/10.1523/jneurosci.4294-14.2015

  19. Jiang, J., Chen, C., Dai, B., Shi, G., Ding, G., Liu, L., & Lu, C. (2015). Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences, 112, 4274-4279. doi: https://doi.org/10.1073/pnas.1422930112

  20. Kawasaki, M., Yamada, Y., Ushiku, Y., Miyauchi, E., & Yamaguchi, Y. (2013). Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction. Scientific Reports, 3, 1692. doi: https://doi.org/10.1038/srep01692

  21. Konvalinka, I., Vuust, P., Roepstorff, A., & Frith, C. D. (2010). Follow you, follow me: Continuous mutual prediction and adaptation in joint tapping. Quarterly Journal of Experimental Psychology, 63, 2220-2230. doi: https://doi.org/10.1080/17470218.2010.497843

  22. Konvalinka, I., Bauer, M., Stahlhut, C., Hansen, L. K., Roepstorff, A., & Frith, C. D. (2014). Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains. Neuroimage, 94, 79-88. doi: https://doi.org/10.1016/j.neuroimage.2014.03.003

  23. Landau, A. N. (2018). Neuroscience: A mechanism for rhythmic sampling in vision. Current Biology, 28, R830-R832. doi: https://doi.org/10.1016/j.cub.2018.05.081

  24. Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000-1004. doi: https://doi.org/10.1016/j.cub.2012.03.054

  25. Liu, D., Liu, S., Liu, X., Zhang, C., Li, A., Jin, C., ... Zhang, X. (2018). Interactive brain activity: Review and progress on EEG-based hyperscanning in social interactions. Frontiers in psychology, 9. doi: https://doi.org/10.3389/fpsyg.2018.01862

  26. Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-based attention samples stimuli rhythmically. Current Biology, 29, 693-699.e694. doi: https://doi.org/10.1016/j.cub.2019.01.010

  27. Richardson, M., Garcia, R., Frank, T., Gregor, M., & Marsh, K. (2012). Measuring group synchrony: a cluster-phase method for analyzing multivariate movement time-series. Frontiers in Physiology, 3. doi: https://doi.org/10.3389/fphys.2012.00405

  28. Rohenkohl, G., & Nobre, A. C. (2011). Alpha oscillations related to anticipatory attention follow temporal expectations. The Journal of Neuroscience 31, 14076-14084. doi: https://doi.org/10.1523/jneurosci.3387-11.2011

  29. Sänger, J., Müller, V., & Lindenberger, U. (2012). Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 6. doi: https://doi.org/10.3389/fnhum.2012.00312

  30. Silva, P., Chung, D., Carvalho, T., Cardoso, T., Davids, K., Araújo, D., & Garganta, J. (2016). Practice effects on intra-team synergies in football teams. Human Movement Science, 46, 39-51. doi: https://doi.org/10.1016/j.humov.2015.11.017

  31. Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. The Journal of Neuroscience 34, 4837-4844. doi: https://doi.org/10.1523/jneurosci.4856-13.2014

  32. Tomassini, A., Spinelli, D., Jacono, M., Sandini, G., & Morrone, M. C. (2015). Rhythmic oscillations of visual contrast sensitivity synchronized with action. The Journal of Neuroscience 35, 7019-7029. doi: https://doi.org/10.1523/jneurosci.4568-14.2015

  33. VanRullen, R. (2013). Visual attention: A rhythmic process? Current Biology, 23, R1110-R1112. doi: https://doi.org/10.1016/j.cub.2013.11.006

  34. VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences 20, 723-735. doi: https://doi.org/10.1016/j.tics.2016.07.006

Download references

Acknowledgements

This research was supported by the China National Social Science Fund in Education (2018 general project: Neural Mechanisms of Multisensory Integration Dysfunction in Autism and Related Intervention under Multi-Modality Educational Perspective. Grant No. BBA180083).

Author information

C. Wang and J. Wang designed the experiment and wrote the paper; H. Li, L. Jia and F. Li conducted the experiment; C. Wang and J. Wang, H. Li, L. Jia and F. Li analyzed the data. All authors approved the final version of the manuscript for submission.

Correspondence to Jun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Open practice statement

The data from all experiments are available on the Open Science Framework (https://osf.io/pg2x8/). None of the experiments described were preregistered.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1526 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, H., Jia, L. et al. Theta band behavioral fluctuations synchronized interpersonally during cooperation. Psychon Bull Rev (2020). https://doi.org/10.3758/s13423-020-01711-0

Download citation

Keywords

  • Cooperation
  • Interpersonal behavioral synchrony
  • Behavioral oscillation
  • Theta-band coherence
  • Joint-action task