Advertisement

Representational gravity: Empirical findings and theoretical implications

  • Timothy L. HubbardEmail author
Theoretical Review
  • 35 Downloads

Abstract

Judgment of the location of a previously viewed moving or stationary target is often displaced in the direction of implied gravitational attraction, and this has been referred to as representational gravity. Variables that have been investigated for a possible influence on representational gravity include characteristics of the target (size/mass, velocity, distance traveled, orientation, modality), display (retention interval, response measure, height in the picture plane), context (nontarget intramodal stimuli, cross-modal components of a single stimulus), and observer (oculomotor behavior, body orientation, psychopathology), and several additional variables that might influence representational gravity but have not yet been investigated are suggested for future studies. Conclusions and speculations regarding the contribution and relationship of representational gravity to several variables, processes, and tasks (physical gravity, linear acceleration, subjective visual vertical, size/mass and weight, other biases in spatial localization, catching and intercepting a moving target, an internal model of gravity, naïve physics, a gravity heuristic, art and aesthetics) are discussed, and compatibility of representational gravity with Gibsonian and representational approaches is noted. It is suggested that representational gravity is an important adaptation that aids observers in interactions with physical objects in the environment, but that such an adaptation is not necessarily fully consistent with objective physical principles.

Keywords

Representational gravity Internal model of gravity Perception of weight Environmental invariants Naïve physics 

Notes

Author note

The author thanks two anonymous reviewers for comments on an earlier version of the manuscript.

References

  1. Angelaki, D. E., McHenry, M. Q., Dickman, J. D., Newlands, S. D., & Hess, B. J. (1999). Computation of inertial motion: Neural strategies to resolve ambiguous otolith information. The Journal of Neuroscience, 19, 316–327.Google Scholar
  2. Angelaki, D. E., Shaikh, A. G., Green, A. M., & Dickman, J. D. (2004). Neurons compute internal models of the physical laws of motion. Nature, 430, 560–564.CrossRefGoogle Scholar
  3. Angelaki, D. E., Wei, M., & Merfeld, D. M. (2001). Vestibular discrimination of gravity and translational acceleration. Annals of the New York Academy of Sciences, 942, 114–127.  https://doi.org/10.1111/j.1749-6632.2001.tb03739.x
  4. Arnheim, R. (1974). Art and visual perception: A psychology of the creative eye. Berkeley: University of California Press.Google Scholar
  5. Arnheim, R. (1988). Visual dynamics. American Scientist, 76, 585–592.Google Scholar
  6. Baurès, R., Benguigui, N., Amorim, M. A., & Siegler, I. A. (2007). Intercepting free falling objects: Better use Occam’s razor than internalize Newton’s law. Vision Research, 47, 2982–2991.CrossRefGoogle Scholar
  7. Bertamini, M. (1993). Memory for position and dynamic representations. Memory & Cognition, 21, 449–457.Google Scholar
  8. Bingham, G. P. (1987). Kinematic form and scaling: Further investigations on the visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance, 13, 155–177.Google Scholar
  9. Crawford, L. E., Margolies, S. M., Drake, J. T., & Murphy, M. E. (2006). Affect biases memory of location: Evidence for the spatial representation of affect. Cognition and Emotion, 20, 1153–1169.CrossRefGoogle Scholar
  10. de sá Teixeira, N. A. (2014). Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Research, 105, 177–188.Google Scholar
  11. de sá Teixeira, N. A. (2016a). How fast do objects fall in visual memory? Uncovering the temporal and spatial features of representational gravity. PLOS ONE, 11(2), e0148953.  https://doi.org/10.1371/journal.pone.0148953
  12. de sá Teixeira, N. A. (2016b). The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements. Experimental Brain Research, 234, 2491–2504.Google Scholar
  13. de sá Teixeira, N. A., & Hecht, H. (2014a). Can representational trajectory reveal the nature of an internal model of gravity? Attention, Perception, & Psychophysics, 76, 1106–1120.Google Scholar
  14. de sá Teixeira, N. A., & Hecht, H. (2014b). The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity. Journal of Vestibular Research, 24, 267–279.Google Scholar
  15. de sá Teixeira, NA, Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1690–1699.Google Scholar
  16. de sá Teixeira, N., & Oliveira, A. M. (2014). Spatial and foveal biases, not perceived mass or heaviness, explain the effect of target size on representational momentum and representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1664–1679.Google Scholar
  17. de sá Teixeira, N., Oliveira, A. M., & Amorim (2010). Combined effects of mass and velocity on forward displacement and phenomenological ratings: A functional measurement approach to the momentum metaphor. Psichologica, 31, 659–676.Google Scholar
  18. de sá Teixeira, N., Pimenta, S., & Raposo, V. (2013). A null effect of target’s velocity in the visual representation of motion with schizophrenic patients. Journal of Abnormal Psychology, 122, 223–230.Google Scholar
  19. de sá Teixeira, N. A., Hecht, H., Diaz Artiles, A., Seyedmadani, K., Sherwood, D. P., & Young, L. R. (2017). Vestibular stimulation interferes with the dynamics of an internal representation of gravity. Quarterly Journal of Experimental Psychology, 70, 2290–2305.CrossRefGoogle Scholar
  20. de sá Teixeira, N. A., Kerzel, D., Hecht, H., & Lacquaniti, F. (2019). A novel dissociation between representational momentum and representational gravity through response modality. Psychological Research, 83, 1223–1236.CrossRefGoogle Scholar
  21. Deroy, O., Fernandez-Prieto, I., Navarra, J., & Spence, C. (2018) Unraveling the paradox of spatial pitch. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 77–93). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  22. Dyde, R. T., Jenkin, M. R., Jenkin, H. L., Zacher, J. E., & Harris, L. R. (2009). The effect of altered gravity states on the perception of orientation. Experimental Brain Research, 194, 647–660.CrossRefGoogle Scholar
  23. Finke, R. A., Freyd, J. J., & Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. Journal of Experimental Psychology: General, 115, 175–188.CrossRefGoogle Scholar
  24. Freyd, J. J. (1993). Five hunches about perceptual processes and dynamic representations. In D. Meyer & S. Kornblum (Eds.), Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 99–119). Cambridge, MA: MIT Press.Google Scholar
  25. Freyd, J. J., & Jones, K. T. (1994). Representational momentum for a spiral path. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 968–976.Google Scholar
  26. Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. Journal of Experimental Psychology: General, 117, 395–407.CrossRefGoogle Scholar
  27. Gershoni, S., & Hochstein, S. (2011). Measuring pictorial balance at first glance using Japanese calligraphy. I-Perception, 2, 508–527.CrossRefGoogle Scholar
  28. Getzmann, S., & Lewald, J. (2009). Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 193(3), 437–443.CrossRefGoogle Scholar
  29. Grush, R. (2005). Internal models and the construction of time: Generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions. Journal of Neural Engineering, 2, S209–S218.CrossRefGoogle Scholar
  30. Harris, L. R., Jenkin, M., Jenkin, H., Zacher, J. E., & Dyde, R. T. (2017). The effect of long-term exposure to microgravity on the perception of upright. NPJ Microgravity, 3(1).  https://doi.org/10.1038/s41526-016-0005-5
  31. Haugen, M. P., & Lämmerzahl, C. (2001). Principles of equivalence: Their role in gravitation physics and experiments that test them. In C. Lämmerzahl, C. W. F. Everitt, & F. W. Hehl. (Eds) Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics, 562, 195–212.Google Scholar
  32. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299–309.CrossRefGoogle Scholar
  33. Hubbard, T. L. (1993). The effect of context on visual representational momentum. Memory & Cognition, 21, 103–114.Google Scholar
  34. Hubbard, T. L. (1995a). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 241–254.Google Scholar
  35. Hubbard, T. L. (1995b). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338.CrossRefGoogle Scholar
  36. Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1484–1493.Google Scholar
  37. Hubbard, T. L. (1998). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets. Canadian Journal of Experimental Psychology, 52, 44–49.CrossRefGoogle Scholar
  38. Hubbard, T. L. (1999). How consequences of physical principles influence mental representation: The environmental invariants hypothesis. In P. R. Killeen & W. R. Uttal (Eds.), Fechner Day 99: The end of 20th century psychophysics. Proceedings of the 15th Annual Meeting of the International Society for Psychophysics (pp. 274–279). Tempe, AZ: The International Society for Psychophysics.Google Scholar
  39. Hubbard, T. L. (2001). The effect of height in the picture plane on the forward displacement of ascending and descending targets. Canadian Journal of Experimental Psychology, 55, 325–330.CrossRefGoogle Scholar
  40. Hubbard, T. L. (2004). The perception of causality: Insights from Michotte’s launching effect, naive impetus theory, and representational momentum. In A. M. Oliveira, M. P. Teixeira, G. F. Borges, & M. J. Ferro (Eds.), Fechner Day 2004 (pp. 116–121). Coimbra, Portugal: The International Society for Psychophysics.Google Scholar
  41. Hubbard, T. L. (2005a). An effect of target orientation on representational momentum. Paideia, 15, 207–216.Google Scholar
  42. Hubbard, T. L. (2005b). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822–851.CrossRefGoogle Scholar
  43. Hubbard, T. L. (2006a). Bridging the gap: Possible roles and contributions of representational momentum. Psicologica, 27, 1–34.Google Scholar
  44. Hubbard, T. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin & Review, 13, 174–177.CrossRefGoogle Scholar
  45. Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 338–365). Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  46. Hubbard, T. L. (2012). Visual perception of force: Comment on White (2012). Psychological Bulletin, 138, 616–623.CrossRefGoogle Scholar
  47. Hubbard, T. L. (2013a). Launching, entraining, and representational momentum: Evidence consistent with an impetus heuristic in perception of causality. Axiomathes, 23, 633–643.CrossRefGoogle Scholar
  48. Hubbard, T. L. (2013b). Phenomenal causality II: Integration and implication. Axiomathes, 23, 485–524.CrossRefGoogle Scholar
  49. Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371–1403.CrossRefGoogle Scholar
  50. Hubbard, T. L. (2015). The varieties of momentum-like experience. Psychological Bulletin, 141, 1081-1119.Google Scholar
  51. Hubbard, T. L. (2018a). Aesthetics and preferences in spatial and scene composition. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 223–240). New York, NY: Cambridge University Press.Google Scholar
  52. Hubbard, T. L. (2018b). Influences on representational momentum. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 121–138). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  53. Hubbard, T. L. (2019). Momentum-like effects and the dynamics of perception, cognition, and action. Attention, Perception, & Psychophysics. Advance online publication. https://doi.org/10. 15283758/s13414-019-01770-zGoogle Scholar
  54. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211–221.Google Scholar
  55. Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte’s (1946/1963) “Launching Effect” paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 294–301.Google Scholar
  56. Hubbard, T. L., & Courtney, J. R. (2010). Cross-modal influences on representational momentum and representational gravity. Perception, 39, 851–862.CrossRefGoogle Scholar
  57. Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect. Canadian Journal of Experimental Psychology, 53, 242-256. Google Scholar
  58. Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research/Psychologische Forschung, 64, 41–55.Google Scholar
  59. Hubbard, T. L., & Ruppel, S. E. (2013). A Fröhlich effect and representational gravity in memory for auditory pitch. Journal of Experimental Psychology: Human Perception and Performance, 39, 1153–1164.Google Scholar
  60. Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). Representation of visual gravitational motion in human vestibular cortex. Science, 308, 416–419.CrossRefGoogle Scholar
  61. Jörges, B., & López-Moliner, J. (2017). Gravity as a strong prior: Implications for perception and action. Frontiers in Human Neuroscience, 11, 203.  https://doi.org/10.3389/fnhum.2017.00203 CrossRefGoogle Scholar
  62. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715.CrossRefGoogle Scholar
  63. Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 2623–2635.CrossRefGoogle Scholar
  64. Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: Dissociation between explicit and implicit knowledge about motion. Psychonomic Bulletin & Review, 8, 439–453.CrossRefGoogle Scholar
  65. La Scaleia, B., Lacquaniti, F., & Zago, M. (2014). Neural extrapolation of motion for a ball rolling down an inclined plane. PLOS ONE, 9, 6, e99837.CrossRefGoogle Scholar
  66. La Scaleia, B., Lacquaniti, F., & Zago, M. (2019). Body orientation contributes to modelling the effects of gravity for target interception in humans. Journal of Physiology, 597, 2021–2043.CrossRefGoogle Scholar
  67. La Scaleia, B., Zago, M., & Lacquaniti, F. (2015). Hand interception of occluded motion in humans: A test of model-based vs. on-line control. Journal of Neurophysiology, 114, 1577–1592.CrossRefGoogle Scholar
  68. Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., & Zago, M. (2015). Gravity in the brain as a reference for space and time perception. Multisensory Research, 28(5/6), 397–426.CrossRefGoogle Scholar
  69. Lacquaniti, F., Bosco, G., Indovina, I., La Scaleia, B., Maffei, V., Moscatelli, A., & Zago, M. (2013). Visual gravitational motion and the vestibular system in humans. Frontiers in Integrative Neuroscience, 7, 101.CrossRefGoogle Scholar
  70. Larson, S. (2012). Musical forces: Motion, metaphor, and meaning in music. Bloomington: Indiana University Press.Google Scholar
  71. Levy, D. L., Sereno, A. B., Gooding, D. C., & O’Driscoll, G. A. (2010). Eye tracking dysfunction in schizophrenia: Characterization and pathophysiology. Current Topics in Behavioral Neuroscience, 4, 311–347.CrossRefGoogle Scholar
  72. Locher, P. J., & Stappers, P. J. (2002). Factors contributing to the implicit dynamic quality of static abstract designs. Perception, 31, 1093–1107.Google Scholar
  73. Lopez, C., Bachofner, C., Mercier, M., & Blanke, O. (2009). Gravity and observer’s body orientation influence the visual perception of human body postures. Journal of Vision, 9(1), 1–14.CrossRefGoogle Scholar
  74. Masuda, T., Kimura, A., Dan, I., & Wada, Y. (2011). Effects of environmental context on temporal perception bias in apparent motion. Vision Research, 51, 1728–1740.CrossRefGoogle Scholar
  75. McBeath, M. K. (2018). Natural regularities and coupled predictive perceptual and cognitive biases: Why we evolved to systematically experience spatial illusions. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 276–294). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  76. McCloskey, M. (1983). Naïve theories of motion. In D. Gentner & A. Stevens (Eds.). Mental models (pp. 299–324). Hillsdale, NJ: Erlbaum.Google Scholar
  77. McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton’s laws? Nature Neuroscience, 4(7), 693–694.CrossRefGoogle Scholar
  78. McManus, I. C., Edmondson, D., & Rodger, J. (1985). Balance in pictures. British Journal of Psychology, 76, 311–324.CrossRefGoogle Scholar
  79. Mittelstaedt, H. (1983). A new solution to the problem of the subjective vertical. Naturwissenschaften, 70, 272–281.CrossRefGoogle Scholar
  80. Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1076–1083.Google Scholar
  81. Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9, 177–194.CrossRefGoogle Scholar
  82. Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward memory displacement in the direction of gravity. Visual Cognition, 9, 28–40.CrossRefGoogle Scholar
  83. Oberle, C. D., McBeath, M. K., Madigan, S. C., & Sugar, T. G. (2005). The Galileo bias: A naive conceptual belief that influences people’s perceptions and performance in a ball-dropping task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 643–653.Google Scholar
  84. Pfeiffer, C., Grivaz, P., Herbelin, B., Serino, A., & Blanke, O. (2016). Visual gravity contributes to subjective first-person perspective. Neuroscience of Consciousness, 2016, 1–12CrossRefGoogle Scholar
  85. Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naïve physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18, 1–34.Google Scholar
  86. Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance, 7, 733–740.Google Scholar
  87. Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an information basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112, 585–615.Google Scholar
  88. Schmiedchen, K., Freigang, C., Rübsamen, R., & Richter, N. (2013). A comparison of visual and auditory representational momentum in spatial tasks. Attention, Perception, & Psychophysics, 75(7), 1507–1519.CrossRefGoogle Scholar
  89. Sweeney, J. A., Clementz, B. A., Haas, G. L., Escobar, M. D., Drake, K., & Frances, A. J. (1994). Eye tracking dysfunction in schizophrenia: Characterization of component eye movement abnormalities, diagnostic specificity, and the role of attention. Journal of Abnormal Psychology, 103(2), 222–230.CrossRefGoogle Scholar
  90. Tajadura-Jiménez, A., Deroy, O., Marquardt, T., Bianchi-Berthouze, N., Asai, T., Kimura, T., & Kitagawa, N. (2018) Audio-tactile cues from an object’s fall change estimates of one’s body height. PLOS ONE, 13(6), e0199354.  https://doi.org/10.1371/journal.pone.0199354 CrossRefGoogle Scholar
  91. Teramoto, W., Hidaka, S., Gyoba, J., & Suzuki, Y. (2010). Auditory temporal cues can modulate visual representational momentum. Attention, Perception, & Psychophysics, 72(8), 2215-2226.CrossRefGoogle Scholar
  92. Tin, C., & Poon, C. S. (2005). Internal models in sensorimotor integration: Perspectives from adaptive control theory. Journal of Neural Engineering, 2, S147–S163.CrossRefGoogle Scholar
  93. Trousselard, M., Barraud, P. A., Nougier, V., Raphel, C., & Cian, C. (2004). Contribution of tactile and interoceptive cues to the perception of the direction of gravity. Cognitive Brain Research, 20, 355–362.CrossRefGoogle Scholar
  94. Umiltà, C., Bonato, M., & Rusconi, E. (2018). S-R compatibility with physical and representational locations: The Simon, SMARC, and STEARC effects. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 60–76). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  95. Valenti, S. S., & Costall, A. (1997). Visual perception of lifted weight from kinematic and static (photographic) displays. Journal of Experimental Psychology: Human Perception and Performance, 23, 181–198.Google Scholar
  96. Vinson, D. W., Abney, D. H., Dale, R., & Matlock, T. (2014). High-level context effects on spatial displacement: The effects of body orientation and language on memory. Frontiers in Psychology, 5, 637.CrossRefGoogle Scholar
  97. White, P. A. (2012). The experience of force: The role of haptic experience of forces in visual perception of object motion and interactions, mental simulation, and motion-related judgments. Psychological Bulletin, 138, 589–615.CrossRefGoogle Scholar
  98. Winner, E., Dion, J., Rosenblatt, E., & Gardner, H. (1987). Do lateral or vertical reversals affect balance in painting? Visual Arts Research, 13, 1–9.Google Scholar
  99. Zago, M. (2018). Perceptual and motor biases in reference to gravity. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 156–166). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  100. Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2004). Internal models of target motion: Expected dynamics overrides measured kinematics in timing manual interceptions. Journal of Neurophysiology, 91, 1620–1634.Google Scholar
  101. Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2005). Fast adaptation of the internal model of gravity for manual interceptions: Evidence for event-dependent learning. Journal of Neurophysiology, 93, 1055–1068.Google Scholar
  102. Zago, M., La Scaleia, B., Miller, W. L., & Lacquaniti, F. (2011). Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions. Journal of Vision, 11(10), 13, 1–10.CrossRefGoogle Scholar
  103. Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: A review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefGoogle Scholar
  104. Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2008). Internal models and prediction of visual gravitational motion. Vision Research, 48(14), 1532–1538.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA
  2. 2.Grand Canyon UniversityPhoenixUSA

Personalised recommendations