Attention induces surround suppression in visual working memory

  • Ming W. H. Fang
  • Susan M. Ravizza
  • Taosheng LiuEmail author
Brief Report


Controversy currently exists regarding whether visual working memory (VWM) maintains sensory or non-sensory representations. Here, we tested the nature of VWM representations by leveraging a perceptual surround suppression effect when an item is attended. Participants performed a delayed-estimation task in which they memorized an array of six colors. A cue indicated which location was most likely probed. In separate experiments, we manipulated external attention (via a precue) or internal attention (via a retrocue). Both types of attention elicited a surround suppression effect, such that memory performance showed a Mexican-hat profile as a function of cue-probe offsets. Given the sensory origin of the surround suppression effect, our results thus provide compelling evidence that VWM maintenance relies on sensory mechanisms.


Attention Visual working memory Surround suppression Sensory recruitment 


Author Note

This work was supported by a grant from the National Institutes of Health (R01EY022727) to T.L. The authors declare that they have no conflicts of interest with respect to their authorship or the publication of this article. Author contributions: This work was conceived and designed by M.W.H. Fang and T. Liu. M.W.H. Fang collected and analyzed the data. S.M. Ravizza and T. Liu supervised the research. M.W.H. Fang, S.M. Ravizza, and T. Liu wrote the manuscript.


  1. Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150–157. CrossRefGoogle Scholar
  2. Bloem, I. M., Watanabe, Y. L., Kibbe, M. M., & Ling, S. (2018). Visual memories bypass normalization. Psychological Science, 29(5), 845–856. CrossRefGoogle Scholar
  3. Boehler, C. N., Tsotsos, J. K., Schoenfeld, M. A., Heinze, H. J., & Hopf, J. M. (2009). The center-surround profile of the focus of attention arises from recurrent processing in visual cortex. Cerebral Cortex, 19(4), 982–991. CrossRefGoogle Scholar
  4. Boehler, C. N., Tsotsos, J. K., Schoenfeld, M. A., Heinze, H. J., & Hopf, J. M. (2011). Neural mechanisms of surround attenuation and distractor competition in visual search. The Journal of Neuroscience, 31(14), 5213–5224. CrossRefGoogle Scholar
  5. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111–124. CrossRefGoogle Scholar
  6. Cutzu, F., & Tsotsos, J. K. (2003). The selective tuning model of attention: Psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 43(2), 1–15. CrossRefGoogle Scholar
  7. D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115–142. CrossRefGoogle Scholar
  8. Dvorine, I. (1963). Dvorine pseudo-isochromatic plates. New York, NY: Harcourt, Brace, & World.Google Scholar
  9. Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485.CrossRefGoogle Scholar
  10. Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194. CrossRefGoogle Scholar
  11. Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632–635. CrossRefGoogle Scholar
  12. Harrison, W. J., & Bays, P. M. (2018). Visual working memory is independent of the cortical spacing between memoranda. Journal of Neuroscience, 38(12), 3116–3123. CrossRefGoogle Scholar
  13. Hopf, J. M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H. J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences, 103(4), 1053–1058. CrossRefGoogle Scholar
  14. Irwin, D. E., & Thomas, L. E. (2008). Visual sensory memory. In S. J. Luck & A. Hollingworth (Eds.), Visual memory (pp. 9–41). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  15. Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science (New York, N.Y.), 282(5386), 108–111. CrossRefGoogle Scholar
  16. Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A. R. E., & D'Esposito, M. (2018). Flexible coding of visual working memory representations during distraction. The Journal of Neuroscience, 38(23), 5267–5276. CrossRefGoogle Scholar
  17. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42. CrossRefGoogle Scholar
  18. Mounts, J. (2000a). Attentional capture by abrupt onsets and feature singletons produces inhibitory surrounds. Attention, 62(7), 1485–1493. Google Scholar
  19. Mounts, J. R. W. (2000b). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62(5), 969–983.CrossRefGoogle Scholar
  20. Muller, N. G., & Kleinschmidt, A. (2004). The attentional ‘spotlight’s’ penumbra: Center-surround modulation in striate cortex. Neuroreport, 15(6), 977–980.Google Scholar
  21. Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163.CrossRefGoogle Scholar
  22. Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207–214. CrossRefGoogle Scholar
  23. Simons, D. (2000). Attentional capture and inattentional blindness. Trends in Cognitive Sciences, 4(4), 147–155.CrossRefGoogle Scholar
  24. Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1–22. CrossRefGoogle Scholar
  25. Souza, A. S., Thalmann, M., & Oberauer, K. (2018). The precision of spatial selection into the focus of attention in working memory. Psychonomic Bulletin & Review, 6(4), 1–8. Scholar
  26. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11, Whole No. 498), 1–29.Google Scholar
  27. van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109(22), 8780–8785. CrossRefGoogle Scholar
  28. Westland, S., & Ripamonti, C. (2004). Computational colour science using MATLAB. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
  29. Xu, Y. (2017). Reevaluating the sensory account of visual working memory storage. Trends in Cognitive Sciences, 21(10), 794–815. CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Ming W. H. Fang
    • 1
  • Susan M. Ravizza
    • 1
    • 2
  • Taosheng Liu
    • 1
    • 2
    Email author
  1. 1.Department of PsychologyMichigan State UniversityEast LansingUSA
  2. 2.Neuroscience ProgramMichigan State UniversityEast LansingUSA

Personalised recommendations