Advertisement

The motor system’s [modest] contribution to speech perception

  • Ryan C. StokesEmail author
  • Jonathan H. Venezia
  • Gregory Hickok
Article

Abstract

Recent evidence suggests that the motor system may have a facilitatory role in speech perception during noisy listening conditions. Studies clearly show an association between activity in auditory and motor speech systems, but also hint at a causal role for the motor system in noisy speech perception. However, in the most compelling "causal" studies performance was only measured at a single signal-to-noise ratio (SNR). If listening conditions must be noisy to invoke causal motor involvement, then effects will be contingent on the SNR at which they are tested. We used articulatory suppression to disrupt motor-speech areas while measuring phonemic identification across a range of SNRs. As controls, we also measured phoneme identification during passive listening, mandible gesturing, and foot-tapping conditions. Two-parameter (threshold, slope) psychometric functions were fit to the data in each condition. Our findings indicate: (1) no effect of experimental task on psychometric function slopes; (2) a small effect of articulatory suppression, in particular, on psychometric function thresholds. The size of the latter effect was 1 dB (~5% correct) on average, suggesting, at best, a minor modulatory role of the speech motor system in perception.

Keywords

Speech Motor theory of speech perception Motor cortex Articulatory suppression 

Notes

References

  1. Alwan, A., Jiang, J., & Chen, W. (2011). Perception of place of articulation for plosives and fricatives in noise. Speech Communication, 53(2), 195-209.Google Scholar
  2. Archila-Meléndez, M. E., Valente, G., Correia, J., Rouhl, R. P., van Kranen-Mastenbroek, V. H., & Jansma, B. M. (2018). Sensorimotor representation of speech perception-cross-decoding of place of articulation features during selective attention to syllables in 7t fmri. eNeuro, ENEURO-0252.Google Scholar
  3. Arlinger, S., Lunner, T., Lyxell, B., & Kathleen Pichora-Fuller, M. (2009). The emergence of cognitive hearing science. Scandinavian Journal of Psychology, 50(5), 371-384.Google Scholar
  4. Arsenault, J. S., & Buchsbaum, B. R. (2016). No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception. Psychonomic Bulletin & Review, 23(4), 1231-1240.Google Scholar
  5. Baddeley, A., Lewis, V., & Vallar, G. (1984). Exploring the articulatory loop. The Quarterly Journal of Experimental Psychology, 36(2), 233-252.Google Scholar
  6. Barnaud, M.-L., Bessière, P., Diard, J., & Schwartz, J.-L. (2018). Reanalyzing neurocognitive data on the role of the motor system in speech perception within cosmo, a bayesian perceptuo-motor model of speech communication. Brain and Language, 187, 19-32.Google Scholar
  7. Bever, T. G., & Poeppel, D. (2010). Analysis by synthesis: A (re-) emerging program of research for language and vision. Biolinguistics, 4(2-3), 174-200.Google Scholar
  8. Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528.Google Scholar
  9. Bishop, D., Brown, B. B., & Robson, J. (1990). The relationship between phoneme discrimination, speech production, and language comprehension in cerebral-palsied individuals. Journal of Speech, Language, and Hearing Research, 33(2), 210-219.Google Scholar
  10. Boersma, P., & Weenink, D. (2016). Praat: doing phonetics by computer [computer program].Google Scholar
  11. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.Google Scholar
  12. Buss, E., Hall III, J. W., & Grose, J. H. (2009). Psychometric functions for pure tone intensity discrimination: Slope differences in school-aged children and adults. The Journal of the Acoustical Society of America, 125(2), 1050-1058.Google Scholar
  13. Cheung, C., Hamilton, L. S., Johnson, K., & Chang, E. F. (2016). The auditory representation of speech sounds in human motor cortex. Elife, 5, e12577.Google Scholar
  14. Cole, R. A., Jakimik, J., & Cooper, W. E. (1978). Perceptibility of phonetic features in fluent speech. The Journal of the Acoustical Society of America, 64(1), 44-56.Google Scholar
  15. Correia, J. M., Jansma, B. M., & Bonte, M. (2015). Decoding articulatory features from fmri responses in dorsal speech regions. Journal of Neuroscience, 35(45), 15015-15025.Google Scholar
  16. Craighero, L., Metta, G., Sandini, G., & Fadiga, L. (2007). The mirror-neurons system: data and models. Progress in Brain Research, 164, 39-59.Google Scholar
  17. D’Ausilio, A., Maffongelli, L., Bartoli, E., Campanella, M., Ferrari, E., Berry, J., & Fadiga, L. (2014). Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-doppler ultrasound imaging. Philosophical Transactions of the Royal Society B, 369(1644) 20130418.Google Scholar
  18. D’Ausilio, A., Pulvermüller, F., Salmas, P., Bufalari, I., Begliomini, C., & Fadiga, L. (2009). The motor somatotopy of speech perception. Current Biology, 19(5), 381-385.Google Scholar
  19. Devlin, J. T., & Watkins, K. E. (2006). Stimulating language: insights from tms. Brain, 130(3), 610-622.Google Scholar
  20. Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2016). Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nature Communications, 7, 12241.Google Scholar
  21. D’Ausilio, A., Bufalari, I., Salmas, P., Busan, P., & Fadiga, L. (2011). Vocal pitch discrimination in the motor system. Brain and Language, 118(1), 9-14.Google Scholar
  22. Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: a tms study. European Journal of Neuroscience, 15(2), 399-402.Google Scholar
  23. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.Google Scholar
  24. Fechner, G. T. (1860). Elemente der psychophysik: Zweiter theil. Breitkopf und Härtel.Google Scholar
  25. Guenther, F. H., Hampson, M., & Johnson, D. (1998). A theoretical investigation of reference frames for the planning of speech movements. Psychological Review, 105(4), 611.Google Scholar
  26. Hamilton, L. S., Edwards, E., & Chang, E. F. (2018). A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Current Biology.Google Scholar
  27. Hanley, J. R., & Bakopoulou, E. (2003). Irrelevant speech, articulatory suppression, and phonological similarity: A test of the phonological loop model and the feature model. Psychonomic Bulletin & Review, 10(2), 435-444.Google Scholar
  28. Hickok, G. (2010). The role of mirror neurons in speech perception and action word semantics. Language and Cognitive Processes, 25(6), 749-776.Google Scholar
  29. Hickok, G. (2012a). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13(2), 135.Google Scholar
  30. Hickok, G. (2012b). The cortical organization of speech processing: Feedback control and predictive coding the context of a dual-stream model. Journal of Communication Disorders, 45(6), 393-402.Google Scholar
  31. Hickok, G. (2014). The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 29(1), 2-20.Google Scholar
  32. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131-138.Google Scholar
  33. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 67-99.Google Scholar
  34. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393-402.Google Scholar
  35. Hickok, G., Costanzo, M., Capasso, R., & Miceli, G. (2011). The role of broca’s area in speech perception: Evidence from aphasia revisited. Brain and Language, 119(3), 214-220.Google Scholar
  36. Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69(3), 407-422.Google Scholar
  37. Hickok, G., Okada, K., Barr, W., Pa, J., Rogalsky, C., Donnelly, K., … Grant, A. (2008). Bilateral capacity for speech sound processing in auditory comprehension: evidence from wada procedures. Brain and Language, 107(3), 179-184.Google Scholar
  38. Hillis, A. E. (2007). Aphasia progress in the last quarter of a century. Neurology, 69(2), 200-213.Google Scholar
  39. Houde, J. F., & Jordan, M. I. (1998). Sensorimotor adaptation in speech production. Science, 279(5354), 1213-1216.Google Scholar
  40. Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: an meg study. Journal of Cognitive Neuroscience, 14(8), 1125-1138.Google Scholar
  41. Klatt, D. H. (1980). Speech perception: A model of acoustic-phonetic analysis and lexical access. Perception and Production of Fluent Speech, 243–288.Google Scholar
  42. Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Attention, Perception, & Psychophysics, 63(8), 1421-1455.Google Scholar
  43. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., et al. (2007). What’s new in psychtoolbox-3. Perception, 36(14), 1.Google Scholar
  44. Kontsevich, L. L., & Tyler, C. W. (1999). Distraction of attention and the slope of the psychometric function. JOSA A, 16(2), 217-222.Google Scholar
  45. Kuhl, P. K., & Miller, J. D. (1971). Speech perception by the chinchilla: Voiced-voiceless distinction in. Annals of the New York Academy of Sciences, 185, 345.Google Scholar
  46. Laurent, R., Barnaud, M.-L., Schwartz, J.-L., Bessière, P., & Diard, J. (2017). The complementary roles of auditory and motor information evaluated in a bayesian perceptuo-motor model of speech perception. Psychological Review.Google Scholar
  47. Leek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures. Perception & Psychophysics, 51(3), 247-256.Google Scholar
  48. Lenneberg, E. H. (1962). Understanding language without ability to speak: a case report.Google Scholar
  49. Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431.Google Scholar
  50. Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1-36.Google Scholar
  51. Liebenthal, E., & Möttönen, R. (2018). An interactive model of auditory-motor speech perception. Brain and Language, 187, 33-40.Google Scholar
  52. Lin, F. R., Yaffe, K., Xia, J., Xue, Q.-L., Harris, T. B., Purchase-Helzner, E., … et al. (2013). Hearing loss and cognitive decline in older adults. JAMA Internal Medicine, 173(4), 293-299.Google Scholar
  53. Liu, H. T., Squires, B., & Liu, C. J. (2016). Articulatory suppression effects on short-term memory of signed digits and lexical items in hearing bimodal-bilingual adults. Journal of Deaf Studies and Deaf Education, 21(4), 362-372.Google Scholar
  54. MacPherson, A., & Akeroyd, M. A. (2014). Variations in the slope of the psychometric functions for speech intelligibility: A systematic survey. Trends in Hearing, 18.Google Scholar
  55. Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., & Iacoboni, M. (2007). The essential role of premotor cortex in speech perception. Current Biology, 17(19), 1692-1696.Google Scholar
  56. Mohr, J. P., Pessin, M. S., Finkelstein, S., Funkenstein, H. H., Duncan, G. W., & Davis, K. R. (1978). Broca aphasia pathologic and clinical. Neurology, 28(4), 311-311.Google Scholar
  57. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to cousineau (2005). Reason, 4(2), 61-64.Google Scholar
  58. Morgan, M., Dillenburger, B., Raphael, S., & Solomon, J. A. (2012). Observers can voluntarily shift their psychometric functions without losing sensitivity. Attention, Perception, & Psychophysics, 74(1), 185-193.Google Scholar
  59. Morillon, B., Hackett, T. A., Kajikawa, Y., & Schroeder, C. E. (2015). Predictive motor control of sensory dynamics in auditory active sensing. Current Opinion in Neurobiology, 31, 230-238.Google Scholar
  60. Möttönen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29(31), 9819-9825.Google Scholar
  61. Möttönen, R., & Watkins, K. E. (2012). Using tms to study the role of the articulatory motor system in speech perception. Aphasiology, 26(9), 1103-1118.Google Scholar
  62. Okada, K., Matchin, W., & Hickok, G. (2018). Neural evidence for predictive coding in auditory cortex during speech production. Psychonomic Bulletin & Review, 25(1), 423-430.Google Scholar
  63. Panouillères, M. T., Boyles, R., Chesters, J., Watkins, K. E., & Möttönen, R. (2018). Facilitation of motor excitability during listening to spoken sentences is not modulated by noise or semantic coherence. Cortex, 103, 44-54.Google Scholar
  64. Panouillères, M. T., & Möttönen, R. (2018). Decline of auditory-motor speech processing in older adults with hearing loss. Neurobiology of Aging, 72, 89-97.Google Scholar
  65. Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.Google Scholar
  66. Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W., Humes, L. E., … et al. (2016). Hearing impairment and cognitive energy: The framework for understanding effortful listening (fuel). Ear and Hearing, 37, 5S-27S.Google Scholar
  67. Potvin, P. J., & Schutz, R. W. (2000). Statistical power for the two-factor repeated measures anova. Behavior Research Methods, Instruments, & Computers, 32(2), 347-356.Google Scholar
  68. Price, C. J. (2000). The anatomy of language: contributions from functional neuroimaging. Journal of Anatomy, 197(3), 335-359.Google Scholar
  69. Prins, N., & Kingdon, F. (2009). Palamedes: Matlab routines for analyzing psychophysical data. Palamedes: matlab routines for analyzing psychophysical data.Google Scholar
  70. Rogalsky, C., Love, T., Driscoll, D., Anderson, S. W., & Hickok, G. (2011). Are mirror neurons the basis of speech perception? evidence from five cases with damage to the purported human mirror system. Neurocase, 17(2), 178-187.Google Scholar
  71. Rönnberg, J., Rudner, M., & Lunner, T. (2011). Cognitive hearing science: The legacy of stuart gatehouse. Trends in Amplification, 15(3), 140-148.Google Scholar
  72. Saeki, E., & Saito, S. (2004). Effect of articulatory suppression on task-switching performance: Implications for models of working memory. Memory, 12(3), 257-271.Google Scholar
  73. Sams, M., Möttönen, R., & Sihvonen, T. (2005). Seeing and hearing others and oneself talk. Cognitive Brain Research, 23(2), 429-435.Google Scholar
  74. Sato, M., Tremblay, P., & Gracco, V. L. (2009). A mediating role of the premotor cortex in phoneme segmentation. Brain and Language, 111(1), 1-7.Google Scholar
  75. Schomers, M. R., Kirilina, E., Weigand, A., Bajbouj, M., & Pulvermüller, F. (2014). Causal influence of articulatory motor cortex on comprehending single spoken words: Tms evidence. Cerebral Cortex, 25(10), 3894-3902.Google Scholar
  76. Skipper, J. I., Devlin, J. T., & Lametti, D. R. (2017). The hearing ear is always found close to the speaking tongue: Review of the role of the motor system in speech perception. Brain and Language, 164, 77-105.Google Scholar
  77. Venezia, J. H., & Hickok, G. (2009). Mirror neurons, the motor system and language: from the motor theory to embodied cognition and beyond. Language and Linguistics Compass, 3(6), 1403-1416.Google Scholar
  78. Venezia, J. H., Saberi, K., Chubb, C., & Hickok, G. (2012). Response bias modulates the speech motor system during syllable discrimination. Frontiers in Psychology, 3, 157.Google Scholar
  79. Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989-994.Google Scholar
  80. Werker, J. F., & Yeung, H. H. (2005). Infant speech perception bootstraps word learning. Trends in Cognitive Sciences, 9(11), 519-527.Google Scholar
  81. Whitford, T. J., Jack, B. N., Pearson, D., Griffiths, O., Luque, D., Harris, A. W., … Le Pelley, M. E. (2017). Neurophysiological evidence of efference copies to inner speech. Elife, 6.Google Scholar
  82. Wilson, S. M. (2009). Speech perception when the motor system is compromised. Trends in Cognitive Sciences, 13(8), 329.Google Scholar
  83. Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701-702.Google Scholar
  84. Wu, Z.-M., Chen, M.-L., Wu, X.-H., & Li, L. (2014). Interaction between auditory and motor systems in speech perception. Neuroscience Bulletin, 30(3), 490-496.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Ryan C. Stokes
    • 1
    Email author
  • Jonathan H. Venezia
    • 1
  • Gregory Hickok
    • 1
  1. 1.Department of Cognitive Sciences Social and Behavioral Sciences GatewayUniversity of California - IrvineIrvineUSA

Personalised recommendations