Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood
- 102 Downloads
Abstract
Our ability to represent temporal, spatial, and numerical information is critical for understanding the world around us. Given the prominence of quantitative representations in the natural world, numerous cognitive, neurobiological, and developmental models have been proposed as a means of describing how we track quantity. One prominent theory posits that time, space, and number are represented by a common magnitude system, or a common neural locus (i.e., Bonn & Cantlon in Cognitive Neuropsychology, 29(1/2), 149–173, 2012; Cantlon, Platt, & Brannon in Trends in Cognitive Sciences, 13(2), 83–91, 2009; Meck & Church in Animal Behavior Processes, 9(3), 320, 1983; Walsh in Trends in Cognitive Sciences, 7(11), 483–488, 2003). Despite numerous similarities in representations of time, space, and number, an increasing body of literature reveals striking dissociations in how each quantity is processed, particularly later in development. These findings have led many researchers to consider the possibility that separate systems may be responsible for processing each quantity. This review will analyze evidence in favor of a common magnitude system, particularly in infancy, which will be tempered by counter evidence, the majority of which comes from experiments with children and adult participants. After reviewing the current data, we argue that although the common magnitude system may account for quantity representations in infancy, the data do not provide support for this system throughout the life span. We also identify future directions for the field and discuss the likelihood of the developmental divergence model of quantity representation, like that of Newcombe (Ecological Psychology, 2, 147–157, 2014), as a more plausible account of quantity development.
Keywords
Nonsymbolic quantity processing Temporal precision Spatial processing Numerical acuityNotes
References
- Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9(26), 1–14.Google Scholar
- Agrillo, C., Ranpura, A., & Butterworth, B. (2010). Time and numerosity estimations are independent: Behavioral evidence for two different systems using a conflict paradigm. Cognitive Neuroscience, 1(2), 96–101.PubMedCrossRefPubMedCentralGoogle Scholar
- Alexander, P. A., Willson, V. L., White, C. S., Fuqua, J. D., Clark, G. D., Wilson, A. F., & Kulikowich, J. M. (1989). Development of analogical reasoning in 4-and 5-year-old children. Cognitive Development, 4(1), 65–88.CrossRefGoogle Scholar
- Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820–1828.PubMedCrossRefPubMedCentralGoogle Scholar
- Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2006). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19, 1845–1853.CrossRefGoogle Scholar
- Ashkenazi, S. (2018). Intentional and automatic processing of numerical information in mathematical anxiety: testing the influence of emotional priming. Cognition and Emotion, 32(8), 1700–1707.PubMedCrossRefPubMedCentralGoogle Scholar
- Aulet, L. S., & Lourenco, S. F. (2018). The developing mental number line: Does its directionality relate to 5-to 7-year-old children’s mathematical abilities?. Frontiers in Psychology, 9, 1142. https://doi.org/10.3389/fpsyg.2018.01142 CrossRefPubMedPubMedCentralGoogle Scholar
- Baker, J. M., Rodzon, K. S., & Jordan, K. (2013). The impact of emotion on numerosity estimation. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00521
- Bar-Haim, Y., Kerem, A., Lamy, D., & Zakay, D. (2010). When time slows down: The influence of threat on time perception in anxiety. Cognition and Emotion, 24(2), 255–263.CrossRefGoogle Scholar
- Barth, H. C. (2008). Judgments of discrete and continuous quantity: An illusory Stroop effect. Cognition, 109(2), 251–266.PubMedCrossRefPubMedCentralGoogle Scholar
- Basso, G., Nichelli, P., Frassinetti, F., & di Pellegrino, G. (1996). Time perception in a neglected space. Neuroreport, 7(13), 2111–2114.PubMedCrossRefPubMedCentralGoogle Scholar
- Baumann, O., Borra, R. J., Bower, J. M., Cullen, K. E., Habas, C., Ivry, R. B., . . . Paulin, M. G. (2015). Consensus paper: The role of the cerebellum in perceptual processes. The Cerebellum, 14(2), 197–220.Google Scholar
- Beatty, W. W., & Shavalia, D. A. (1980). Spatial memory in rats: Time course of working memory and effect of anesthetics. Behavioral and Neural Biology, 28(4), 454–462.PubMedCrossRefPubMedCentralGoogle Scholar
- Bjoertomt, O., Cowey, A., & Walsh, V. (2002). Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. Brain, 125(9), 2012–2022.PubMedCrossRefPubMedCentralGoogle Scholar
- Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134(3), 330–343.PubMedCrossRefPubMedCentralGoogle Scholar
- Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience & Biobehavioral Reviews, 36(10), 2257–2273.CrossRefGoogle Scholar
- Bonn, C. D., & Cantlon, J. F. (2012). The origins and structure of quantitative concepts. Cognitive Neuropsychology, 29(1/2), 149–173.PubMedPubMedCentralCrossRefGoogle Scholar
- Bonn, C. D., & Cantlon, J. F. (2017). Spontaneous, modality-general abstraction of a ratio scale. Cognition, 169, 36–45.PubMedPubMedCentralCrossRefGoogle Scholar
- Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388.PubMedCrossRefPubMedCentralGoogle Scholar
- Bonny, J. W., & Lourenco, S. F. (2015). Individual differences in children’s approximations of area correlate with competence in basic geometry. Learning and Individual Differences, 44, 16–24.CrossRefGoogle Scholar
- Borghesani, V., de Hevia, M. D., Viarouge, A., Chagas, P. P., Eger, E., & Piazza, M. (2018). Processing number and length in the parietal cortex: Sharing resources, not a common code. Cortex. Advance online publication. https://doi.org/10.1016/j.cortex.2018.07.017
- Boroditsky, L. (2001). Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43(1), 1–22.PubMedCrossRefPubMedCentralGoogle Scholar
- Boroditsky, L. (2008, January). Do English and Mandarin speakers think differently about time?. Proceedings of the Cognitive Science Society, 30(30).Google Scholar
- Boroditsky, L., Fuhrman, O., & McCormick, K. (2011). Do English and Mandarin speakers think about time differently?. Cognition, 118(1), 123–129.PubMedCrossRefPubMedCentralGoogle Scholar
- Boroditsky, L., & Gaby, A. (2010). Remembrances of times East: Absolute spatial representations of time in an Australian aboriginal community. Psychological Science, 21(11), 1635–1639.PubMedCrossRefPubMedCentralGoogle Scholar
- Bottini, R., & Casasanto, D. (2013). Space and time in the child’s mind: Metaphoric or ATOMic?. Frontiers in Psychology, 4, 803. https://doi.org/10.3389/fpsyg.2013.00803 CrossRefPubMedPubMedCentralGoogle Scholar
- Brannon, E., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9(6), 59–64.CrossRefGoogle Scholar
- Brannon, E., Suanda, S., Libertus, K. (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Developmental Science, 10(6), 770–777.PubMedPubMedCentralCrossRefGoogle Scholar
- Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59(7), 1118–1140.CrossRefGoogle Scholar
- Buhusi, C. V., & Meck, W. H. (2009). Relativity theory and time perception: Single or multiple clocks? PLoS ONE, 4(7), e6268.PubMedPubMedCentralCrossRefGoogle Scholar
- Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33(2), 301–311.PubMedPubMedCentralCrossRefGoogle Scholar
- Bunge, S. A., & Wright, S. B. (2007). Neurodevelopmental changes in working memory and cognitive control. Current Opinion in Neurobiology, 17(2), 243–250.PubMedCrossRefPubMedCentralGoogle Scholar
- Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425–428.PubMedCrossRefPubMedCentralGoogle Scholar
- Cai, Z. G., & Connell, L. (2015). Space–time interdependence: Evidence against asymmetric mapping between time and space. Cognition, 136, 268–281.PubMedCrossRefPubMedCentralGoogle Scholar
- Cantlon, J. F., & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), e328.PubMedPubMedCentralCrossRefGoogle Scholar
- Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.PubMedPubMedCentralCrossRefGoogle Scholar
- Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83–91.PubMedPubMedCentralCrossRefGoogle Scholar
- Cantrell, L., Boyer, T. W., Cordes, S., & Smith, L. B. (2015). Signal clarity: An account of the variability in infant quantity discrimination tasks. Developmental Science, 18(6), 877–893.PubMedCrossRefPubMedCentralGoogle Scholar
- Cantrell, L., & Smith, L. B. (2013). Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition, 128(3), 331–352.PubMedPubMedCentralCrossRefGoogle Scholar
- Cappelletti, M., Barth, H., Fregni, F., Spelke, E. S., & Pascual-Leone, A. (2007). rTMS over the intraparietal sulcus disrupts numerosity processing. Experimental Brain Research, 179(4), 631.PubMedPubMedCentralCrossRefGoogle Scholar
- Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2007). The middle house or the middle floor: Bisecting horizontal and vertical mental number lines in neglect. Neuropsychologia, 45(13), 2989–3000.PubMedPubMedCentralCrossRefGoogle Scholar
- Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia, 47(13), 2732–2748.PubMedPubMedCentralCrossRefGoogle Scholar
- Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2011). Numbers and time doubly dissociate. Neuropsychologia, 49(11), 3078–3092.PubMedCrossRefPubMedCentralGoogle Scholar
- Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593.PubMedCrossRefPubMedCentralGoogle Scholar
- Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child’s mind: Evidence for a cross-dimensional asymmetry. Cognitive Science, 34(3), 387–405.PubMedCrossRefPubMedCentralGoogle Scholar
- Casini, L., & Ivry, R. B. (1999). Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology, 13(1), 10.PubMedCrossRefPubMedCentralGoogle Scholar
- Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693–4698.CrossRefGoogle Scholar
- Chen, Z., Sanchez, R. P., & Campbell, T. (1997). From beyond to within their grasp: The rudiments of analogical problem solving in 10-and 13-month-olds. Developmental Psychology, 33(5), 790.PubMedCrossRefPubMedCentralGoogle Scholar
- Clayton, S., & Gilmore, C. (2015). Inhibition in dot comparison tasks. Zdm, 47(5), 759–770.CrossRefGoogle Scholar
- Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177–184.PubMedCrossRefPubMedCentralGoogle Scholar
- Conson, M., Cinque, F., Barbarulo, A. M., & Trojano, L. (2008). A common processing system for duration, order and spatial information: Evidence from a time estimation task. Experimental Brain Research, 187(2), 267–274.PubMedCrossRefPubMedCentralGoogle Scholar
- Conway, C. M., Bauernschmidt, A., Huang, S. S., & Pisoni, D. B. (2010). Implicit statistical learning in language processing: Word predictability is the key. Cognition, 114(3), 356–371.PubMedCrossRefPubMedCentralGoogle Scholar
- Cordes, S., & Brannon, E. M. (2008). The difficulties of representing continuous extent in infancy: Using number is just easier. Child Development, 79(2), 476–489.PubMedPubMedCentralCrossRefGoogle Scholar
- Coull, J. T., & Frith, C. D. (1998). Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. NeuroImage, 8(2), 176–187.PubMedCrossRefPubMedCentralGoogle Scholar
- Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303(5663), 1506–1508.PubMedCrossRefPubMedCentralGoogle Scholar
- Crisafi, M. A., & Brown, A. L. (1986). Analogical transfer in very young children: Combining two separately learned solutions to reach a goal. Child Development, 57(4), 953–968.PubMedCrossRefPubMedCentralGoogle Scholar
- Crollen, V., Grade, S., Pesenti, M., & Dormal, V. (2013). A common metric magnitude system for the perception and production of numerosity, length, and duration. Frontiers in Psychology, 4, 449.PubMedPubMedCentralCrossRefGoogle Scholar
- Danckert, J., Ferber, S., Pun, C., Broderick, C., Striemer, C., Rock, S., & Stewart, D. (2007). Neglected time: Impaired temporal perception of multisecond intervals in unilateral neglect. Journal of Cognitive Neuroscience, 19(10), 1706–1720.PubMedCrossRefPubMedCentralGoogle Scholar
- de Haan, M., Pascalis, O., & Johnson, M. H. (2002). Specialization of neural mechanisms underlying face recognition in human infants. Journal of Cognitive Neuroscience, 14(2), 199–209.PubMedCrossRefPubMedCentralGoogle Scholar
- de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 201323628. https://doi.org/10.1073/pnas.1323628111
- de Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653–660.PubMedPubMedCentralCrossRefGoogle Scholar
- de Hevia, M. D., & Spelke, E. S. (2013). Not all continuous dimensions map equally: Number-brightness mapping in human infants. PLoS ONE, 8(11), e81241.PubMedPubMedCentralCrossRefGoogle Scholar
- de Hevia, M. D., Vanderslice, M., & Spelke, E. S. (2012). Cross-dimensional mapping of number, length and brightness by preschool children. PLoS ONE, 7(4), e35530.PubMedPubMedCentralCrossRefGoogle Scholar
- de Hevia, M. D., Veggiotti, L., Streri, A., & Bonn, C. D. (2017). At birth, humans associate “few” with left and “many” with right. Current Biology, 27(24), 3879-3884.PubMedCrossRefPubMedCentralGoogle Scholar
- De Visscher, A., Noël, M. P., Pesenti, M., & Dormal, V. (2017). Developmental dyscalculia in adults: beyond numerical magnitude impairment. Journal of Learning Disabilities. https://doi.org/10.1177/0022219417732338
- Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press.Google Scholar
- Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.CrossRefGoogle Scholar
- Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMedCrossRefPubMedCentralGoogle Scholar
- Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5880), 1217–1220.PubMedPubMedCentralCrossRefGoogle Scholar
- DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6.Google Scholar
- DeWind, N. K., & Brannon, E. M. (2016). Significant inter-test reliability across approximate number system assessments. Frontiers in Psychology, 7, 310.PubMedPubMedCentralCrossRefGoogle Scholar
- Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 22(3), 271–294.CrossRefGoogle Scholar
- Diamond, A., Towle, C., & Boyer, K. (1994). Young children’s performance on a task sensitive to the memory functions of the medial temporal lobe in adults: The delayed nonmatching-to-sample task reveals problems that are due to non-memory-related task demands. Behavioral Neuroscience, 108(4), 659.PubMedCrossRefPubMedCentralGoogle Scholar
- Doi, H., & Shinohara, K. (2009). The perceived duration of emotional face is influenced by the gaze direction. Neuroscience Letters, 457(2), 97–100.PubMedCrossRefPubMedCentralGoogle Scholar
- Doi, H., & Shinohara, K. (2016). Emotional faces influence numerosity estimation without awareness. Cognitive Processing, 17(4), 389–397.PubMedCrossRefPubMedCentralGoogle Scholar
- Dormal, V., Andres, M., & Pesenti, M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus: a transcranial magnetic stimulation study. Cortex, 44(4), 462–469.PubMedCrossRefPubMedCentralGoogle Scholar
- Dormal, V., Andres, M., & Pesenti, M. (2012). Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex, 48(5), 623–629.PubMedCrossRefPubMedCentralGoogle Scholar
- Dormal, V., Dormal, G., Joassin, F., & Pesenti, M. (2012). A common right fronto-parietal network for numerosity and duration processing: An fMRI study. Human Brain Mapping, 33(6), 1490–1501.PubMedCrossRefPubMedCentralGoogle Scholar
- Dormal, V., Grade, S., Mormont, E., & Pesenti, M. (2012). Dissociation between numerosity and duration processing in aging and early Parkinson’s disease. Neuropsychologia, 50(9), 2365–2370.PubMedCrossRefPubMedCentralGoogle Scholar
- Dormal, V., & Pesenti, M. (2009). Common and specific contributions of the intraparietal sulci to numerosity and length processing. Human Brain Mapping, 30(8), 2466–2476.PubMedCrossRefPubMedCentralGoogle Scholar
- Dormal, V., & Pesenti, M. (2012). Processing magnitudes within the parietal cortex. Horizons in Neuroscience Research, 8, 107–140.Google Scholar
- Dormal, V. & Pesenti, M. (2013). Processing numerosity, length and duration in a three-dimensional Stroop-like task: Towards a gradient of processing automaticity? Psychological Research, 77(2), 116–127.CrossRefGoogle Scholar
- Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 121(2), 109–124.PubMedCrossRefPubMedCentralGoogle Scholar
- Droit-Volet, S., Brunot, S., & Niedenthal, P. (2004). Perception of the duration of emotional events. Cognition and Emotion, 18(6), 849-858.CrossRefGoogle Scholar
- Droit-Volet, S., Clément, A., & Fayol, M. (2003). Time and number discrimination in a bisection task with a sequence of stimuli: A developmental approach. Journal of Experimental Child Psychology, 84(1), 63-76.PubMedCrossRefPubMedCentralGoogle Scholar
- Droit-Volet, S., Clément, A., Fayol, M. (2008). Time, number and length: Similarities and differences in discrimination in adults and children. The Quarterly Journal of Experimental Psychology, 61(12), 1827-1846.PubMedCrossRefPubMedCentralGoogle Scholar
- Droit-Volet, S., Fayolle, S., Lamotte, M., & Gil, S. (2013). Time, emotion and the embodiment of timing. Timing & Time Perception, 1(1), 99–126.CrossRefGoogle Scholar
- Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our time perception. Trends in Cognitive Sciences, 1(12), 504-513.CrossRefGoogle Scholar
- Feigenson, L. (2007). The equality of quantity. Trends in Cognitive Sciences, 11(5), 185-187.PubMedCrossRefPubMedCentralGoogle Scholar
- Feigenson, L., Libertus, M., Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7(2), 74–79.PubMedPubMedCentralCrossRefGoogle Scholar
- Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.PubMedCrossRefPubMedCentralGoogle Scholar
- Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555.PubMedCrossRefPubMedCentralGoogle Scholar
- Fuhrman, O., & Boroditsky, L. (2007, January). Mental time-lines follow writing direction: Comparing English and Hebrew speakers. Proceedings of the Cognitive Science Society, 29(29).Google Scholar
- Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148.PubMedCrossRefPubMedCentralGoogle Scholar
- Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.Google Scholar
- Geary, D. C., & Vanmarle, K. (2016). Young children’s core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 2130–2144.PubMedCrossRefPubMedCentralGoogle Scholar
- Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87–B95.PubMedCrossRefPubMedCentralGoogle Scholar
- Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organized: Evidence from days of the week. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 40, 171–172.CrossRefGoogle Scholar
- Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment?. Psychological Review, 62(1), 32.PubMedCrossRefPubMedCentralGoogle Scholar
- Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., ... Rapoport, J. L. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6(4), 551–559.Google Scholar
- Gil, S., & Droit-Volet, S. (2012). Emotional time distortions: the fundamental role of arousal. Cognition & Emotion, 26(5), 847–862.CrossRefGoogle Scholar
- Gil, S., Niedenthal, P. M., & Droit-Volet, S. (2007). Anger and time perception in children. Emotion, 7(1), 219–225.PubMedCrossRefPubMedCentralGoogle Scholar
- Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., . . . Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLOS ONE, 8(6), e67374.Google Scholar
- Göbel, S. M., Calabria, M., Farne, A., & Rossetti, Y. (2006). Parietal rTMS distorts the mental number line: Simulating ‘spatial’ neglect in healthy subjects. Neuropsychologia, 44(6), 860–868.PubMedCrossRefPubMedCentralGoogle Scholar
- Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798.PubMedCrossRefPubMedCentralGoogle Scholar
- Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: Rate, content, and the vocabulary spurt. Journal of Child Language, 17(1), 171–183.PubMedCrossRefPubMedCentralGoogle Scholar
- Gooch, C. M., Wiener, M., Hamilton, C. A., & Coslett, B. H. (2011). Temporal discrimination of sub-and suprasecond time intervals: A voxel-based lesion mapping analysis. Frontiers in Integrative Neuroscience, 5, 1–10.CrossRefGoogle Scholar
- Goswami, U., & Brown, A. L. (1990). Melting chocolate and melting snowmen: Analogical reasoning and causal relations. Cognition, 35(1), 69–95.PubMedCrossRefPubMedCentralGoogle Scholar
- Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457.PubMedCrossRefPubMedCentralGoogle Scholar
- Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665.PubMedCrossRefPubMedCentralGoogle Scholar
- Halit, H., De Haan, M., & Johnson, M. H. (2003). Cortical specialisation for face processing: Face-sensitive event-related potential components in 3-and 12-month-old infants. NeuroImage, 19(3), 1180–1193.PubMedCrossRefPubMedCentralGoogle Scholar
- Hamamouche, K., Hurst, M., & Cordes, S. (2016, August). The effect of emotion and induced arousal on numerical processing. Proceedings of the 38th Annual Meeting of the Cognitive Science Society. Philadelphia, PA: Cognitive Science Society.Google Scholar
- Hamamouche, K., Keefe, M., Jordan, K., & Cordes, S. (2018). Cognitive load affects temporal and numerical judgments in distinct ways. Manuscript submitted for publication.Google Scholar
- Hamamouche, K. A., Niemi, L., & Cordes, S. (2017). Quantifying a threat: Evidence of a numeric processing bias. Acta Psychologica, 177, 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
- Harrington, D. L., Haaland, K. Y., & Knight, R. T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18(3), 1085–1095.PubMedCrossRefPubMedCentralGoogle Scholar
- Hart, S. J., Davenport, M. L., Hooper, S. R., & Belger, A. (2006). Visuospatial executive function in Turner syndrome: functional MRI and neurocognitive findings. Brain, 129(5), 1125–1136.PubMedPubMedCentralCrossRefGoogle Scholar
- Harter, M. R., & Suitt, C. D. (1970). Visually-evoked cortical responses and pattern vision in the infant: A longitudinal study. Psychonomic Science, 18(4), 235–237.CrossRefGoogle Scholar
- Harvey, B. M., & Dumoulin, S. O. (2017). Can responses to basic non-numerical visual features explain neural numerosity responses?. NeuroImage, 149, 200–209.PubMedCrossRefPubMedCentralGoogle Scholar
- Harvey, B. M., Fracasso, A., Petridou, N., & Dumoulin, S. O. (2015). Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. Proceedings of the National Academy of Sciences, 112(44), 13525–13530.CrossRefGoogle Scholar
- Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123-1126.PubMedCrossRefPubMedCentralGoogle Scholar
- Hayashi, M. J., Kanai, R., Tanabe, H. C., Yoshida, Y., Carlson, S., Walsh, V., & Sadato, N. (2013). Interaction of numerosity and time in prefrontal and parietal cortex. Journal of Neuroscience, 33(3), 883–893.PubMedCrossRefPubMedCentralGoogle Scholar
- Hinton, S. C., & Meck, W. H. (2004). Frontal–striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Research, 21(2), 171–182.PubMedCrossRefPubMedCentralGoogle Scholar
- Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.PubMedCrossRefPubMedCentralGoogle Scholar
- Honig, W. K. (2018). Studies of working memory in the pigeon. In Cognitive processes in animal behavior (pp. 211–248). New York, NY: Routledge.CrossRefGoogle Scholar
- Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19599–19604.PubMedPubMedCentralCrossRefGoogle Scholar
- Hurst, M., Leigh Monahan, K., Heller, E., & Cordes, S. (2014). 123s and ABC s: developmental shifts in logarithmicto-linear responding reflect fluency with sequence values. Developmental Science, 17(6), 892–904.PubMedCrossRefPubMedCentralGoogle Scholar
- Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107.PubMedPubMedCentralCrossRefGoogle Scholar
- Hyde, D. C., Porter, C. L., Flom, R., & Stone, S. A. (2013). Relational congruence facilitates neural mapping of spatial and temporal magnitudes in preverbal infants. Developmental Cognitive Neuroscience, 6, 102–112.PubMedCrossRefPubMedCentralGoogle Scholar
- Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222–1229.CrossRefGoogle Scholar
- Irving-Bell, L., Small, M., & Cowey, A. (1999). A distortion of perceived space in patients with right-hemisphere lesions and visual hemineglect. Neuropsychologia, 37(8), 919–925.PubMedCrossRefPubMedCentralGoogle Scholar
- Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. PNAS, 106(25), 10382–10385.PubMedCrossRefPubMedCentralGoogle Scholar
- Jang, S., & Cho, S. (2016). The acuity for numerosity (but not continuous magnitude) discrimination correlates with quantitative problem solving but not routinized arithmetic. Current Psychology, 35(1), 44–56.CrossRefGoogle Scholar
- Jordan, K., & Brannon, E. (2006). The multisensory representation of number in infancy. PNAS, 103(9), 3486–3489.PubMedCrossRefPubMedCentralGoogle Scholar
- Kadosh, R. C., Kadosh, K. C., Linden, D. E., Gevers, W., Berger, A., & Henik, A. (2007). The brain locus of interaction between number and size: A combined functional magnetic resonance imaging and event-related potential study. Journal of Cognitive Neuroscience, 19(6), 957–970.CrossRefGoogle Scholar
- Kaufmann, L., & Nuerk, H. C. (2008). Basic number processing deficits in ADHD: A broad examination of elementary and complex number processing skills in 9-to 12-year-old children with ADHD-C. Developmental Science, 11(5), 692–699.PubMedCrossRefPubMedCentralGoogle Scholar
- Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L. B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44(4), 376–385.PubMedCrossRefPubMedCentralGoogle Scholar
- Khanum, S., Hanif, R., Spelke, E. S., Berteletti, I., & Hyde, D. C. (2016). Effects of non-symbolic approximate number practice on symbolic numerical abilities in Pakistani children. PLoS ONE, 11(10), e0164436.PubMedPubMedCentralCrossRefGoogle Scholar
- Kramer, P., Bressan, P., & Grassi, M. (2011). Time estimation predicts mathematical intelligence. PLoS ONE, 6(12), e28621.PubMedPubMedCentralCrossRefGoogle Scholar
- Kuntsi, J., Oosterlaan, J., & Stevenson, J. (2001). Psychological mechanisms in hyperactivity: I response inhibition deficit, working memory impairment, delay aversion, or something else? The Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(2), 199–210.CrossRefGoogle Scholar
- Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 53–486.CrossRefGoogle Scholar
- Lambrechts, A., Walsh, V., & van Wassenhove, V. (2013). Evidence accumulation in the magnitude system. PLoS ONE, 8(12), e82122.PubMedPubMedCentralCrossRefGoogle Scholar
- Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40.Google Scholar
- Levey, D. J. (1988). Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecological Monographs, 58(4), 251–269.CrossRefGoogle Scholar
- Lewis, E. A., Zax, A., & Cordes, S. (2017). The impact of emotion on numerical estimation: A developmental perspective. The Quarterly Journal of Experimental Psychology, 1–36. Advance online publication. https://doi.org/10.1080/17470218.2017.1318154
- Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373-379.PubMedPubMedCentralCrossRefGoogle Scholar
- Lindskog, M., Winman, A., & Poom, L. (2016). Arithmetic training does not improve approximate number system acuity. Frontiers in Psychology, 7, 1634. PubMedPubMedCentralCrossRefGoogle Scholar
- Loiselle, B. A., & Blake, J. G. (1991). Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology, 72(1), 180–193.CrossRefGoogle Scholar
- Lourenco, S., & Longo, M. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881. https://doi.org/10.1177/0956797610370158 CrossRefPubMedPubMedCentralGoogle Scholar
- Lourenco, S. F., Ayzenberg, V., & Lyu, J. (2016). A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex, 81, 93–103.PubMedCrossRefPubMedCentralGoogle Scholar
- Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children. Developmental Science, 20(4), e12418.CrossRefGoogle Scholar
- Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737–18742.CrossRefGoogle Scholar
- Lusardi, A. (2012). Numeracy, financial literacy, and financial decision-making (NBER Working Paper No. 17821). Retrieved from https://www.nber.org/papers/w17821
- Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.PubMedCrossRefPubMedCentralGoogle Scholar
- Mariani, M. A., & Barkley, R. A. (1997). Neuropsychological and academic functioning in preschool boys with attention deficit hyperactivity disorder. Developmental Neuropsychology, 13(1), 111–129.CrossRefGoogle Scholar
- Mattell, M., & Meck, W. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139–170.CrossRefGoogle Scholar
- Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS ONE https://doi.org/10.1371/journal.pone.0023749
- Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.PubMedPubMedCentralGoogle Scholar
- Meck, W. H., Church, R. M., Wenk, G. L., & Olton, D. S. (1987). Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory. Journal of Neuroscience, 7(11), 3505–3511.PubMedCrossRefPubMedCentralGoogle Scholar
- Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145–152.PubMedCrossRefPubMedCentralGoogle Scholar
- Merritt, D., Casasanto, D., & Brannon, E. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition, 117(2), 191–202.PubMedPubMedCentralCrossRefGoogle Scholar
- Mills, D. L., Coffey-Corina, S., & Neville, H. J. (1997). Language comprehension and cerebral specialization from 13 to 20 months. Developmental Neuropsychology, 13(3), 397–445.CrossRefGoogle Scholar
- Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast. Journal of Neuroscience, 27(2), 315–321.PubMedCrossRefPubMedCentralGoogle Scholar
- Mix, K. S. , & Cheng, Y.-L. (2012). Space and math: The developmental and educational implications. In J. Benson (Ed.), Advances in child development and behavior (pp. 179 – 243). New York, NY : Elsevier.Google Scholar
- Möhring, W., Frick, A., & Newcombe, N. S. (2018). Spatial scaling, proportional thinking, and numerical understanding in 5-to 7-year-old children. Cognitive Development, 45, 57–67.CrossRefGoogle Scholar
- Möhring, W., Libertus, M. E., & Bertin, E. (2012). Speed discrimination in 6-and 10-month-old infants follows Weber’s law. Journal of Experimental Child Psychology, 111(3), 405–418.PubMedCrossRefPubMedCentralGoogle Scholar
- Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M. C., & Noël, M. P. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874.PubMedCrossRefPubMedCentralGoogle Scholar
- Newcombe, N. (2014). The origins and development of magnitude estimation. Ecological Psychology, 2, 147–157.CrossRefGoogle Scholar
- Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: the intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6(6), 491–505.PubMedPubMedCentralGoogle Scholar
- Norris, J. E., & Castronovo, J. (2016). Dot display affects approximate number system acuity and relationships with mathematical achievement and inhibitory control. PloS one, 11(5), e0155543.PubMedPubMedCentralCrossRefGoogle Scholar
- Nys, J., & Content, A. (2012). Judgments of discrete and continuous quantity in adults: Number counts!. The Quarterly Journal of Experimental Psychology, 65(4), 675–690.PubMedCrossRefPubMedCentralGoogle Scholar
- Odic, D. (2018). Children’s intuitive sense of number develops independently of their perception of area, density, length, and time. Developmental Science. Advance online publication. https://doi.org/10.1111/desc.12533
- Odic, D., Libertus, M., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103–1112.PubMedCrossRefPubMedCentralGoogle Scholar
- Odic, D., Lisboa, J. V., Eisinger, R., Olivera, M. G., Maiche, A., & Halberda, J. (2016). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17–26.PubMedCrossRefPubMedCentralGoogle Scholar
- Odic, D., & Starr, A. (2018). An introduction to the approximate number system. Child Development Perspectives https://doi.org/10.1111/cdep.12288
- Osborne, J. L., Clark, S. J., Morris, R. J., Williams, I. H., Riley, J. R., Smith, A. D., ... Edwards, A. S. (1999). A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology, 36(4), 519–533.Google Scholar
- Ouellet, M., Santiago, J., Israeli, Z., & Gabay, S. (2010). Is the future the right time?. Experimental Psychology, 57(4), 308–314. https://doi.org/10.1027/1618-3169/a000036 CrossRefPubMedPubMedCentralGoogle Scholar
- Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293.PubMedPubMedCentralCrossRefGoogle Scholar
- Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019.PubMedPubMedCentralCrossRefGoogle Scholar
- Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188–200.PubMedPubMedCentralCrossRefGoogle Scholar
- Patro, K., & Haman, M. (2012). The spatial–numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111(3), 534–542.PubMedCrossRefPubMedCentralGoogle Scholar
- Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., ... Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences, 108(38), 16056–16061.Google Scholar
- Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12(3), 461–479.PubMedCrossRefPubMedCentralGoogle Scholar
- Peters, E., Västfjäll, D., Slovic, P., Mertz, C. K., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological Science, 17(5), 407–413.PubMedCrossRefPubMedCentralGoogle Scholar
- Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes?. NeuroImage, 15(2), 435–446.PubMedCrossRefPubMedCentralGoogle Scholar
- Pouthas, V., George, N., Poline, J. B., Pfeuty, M., VandeMoorteele, P. F., Hugueville, L., ... Renault, B. (2005). Neural network involved in time perception: An fMRI study comparing long and short interval estimation. Human Brain Mapping, 25(4), 433–441.Google Scholar
- Previtali, P., de Hevia, M. D., & Girelli, L. (2010). Placing order in space: The SNARC effect in serial learning. Experimental Brain Research, 201(3), 599–605.PubMedCrossRefPubMedCentralGoogle Scholar
- Price, G. R., & Fuchs, L. S. (2016). The mediating relation between symbolic and nonsymbolic foundations of math competence. PLoS ONE, 11(2), e0148981.PubMedPubMedCentralCrossRefGoogle Scholar
- Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042–R1043.PubMedCrossRefPubMedCentralGoogle Scholar
- Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50–57.PubMedCrossRefPubMedCentralGoogle Scholar
- Provasi, J., Rattat, A. C., & Droit-Volet, S. (2011). Temporal bisection in 4-month-old infants. Journal of Experimental Psychology: Animal Behavior Processes, 37(1), 108.PubMedPubMedCentralGoogle Scholar
- Rammsayer, T., & Classen, W. (1997). Impaired temporal discrimination in Parkinson’s disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. International Journal of Neuroscience, 91(1/2), 45–55.PubMedCrossRefPubMedCentralGoogle Scholar
- Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological Bulletin, 135(6), 943.PubMedPubMedCentralCrossRefGoogle Scholar
- Reznick, J. S., Morrow, J. D., Goldman, B. D., & Snyder, J. (2004). The onset of working memory in infants. Infancy, 6(1), 145–154.CrossRefGoogle Scholar
- Roberts, W. A., Coughlin, R., & Roberts, S. (2000). Pigeons flexibly time or count on cue. Psychological Science, 11(3), 218–222.PubMedCrossRefPubMedCentralGoogle Scholar
- Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 906–914.PubMedPubMedCentralGoogle Scholar
- Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2002). Processing speed in the 1st year of life: A longitudinal study of preterm and full-term infants. Developmental Psychology, 38(6), 895.PubMedCrossRefPubMedCentralGoogle Scholar
- Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74(6), 1807–1822.PubMedCrossRefPubMedCentralGoogle Scholar
- Rugani, R., Lunghi, M., Di Giorgio, E., Regolin, L., Dalla Barba, B., Vallortigara, G., & Simion, F. (2017). A mental number line in human newborns. bioRxiv, 159335.Google Scholar
- Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534–536.PubMedCrossRefPubMedCentralGoogle Scholar
- Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.PubMedCrossRefPubMedCentralGoogle Scholar
- Santiago, J., Lupáñez, J., Pérez, E., & Funes, M. J. (2007). Time (also) flies from left to right. Psychonomic Bulletin & Review, 14(3), 512–516.CrossRefGoogle Scholar
- Schafer, G., & Plunkett, K. (1998). Rapid word learning by fifteen-month-olds under tightly controlled conditions. Child Development, 69(2), 309–320.PubMedCrossRefPubMedCentralGoogle Scholar
- Schmitt, V., Kröger, I., Zinner, D., Call, J., & Fischer, J. (2013). Monkeys perform as well as apes and humans in a size discrimination task. Animal Cognition, 16(5), 829–838.PubMedPubMedCentralCrossRefGoogle Scholar
- Shettleworth, S. J., Krebs, J. R., Stephens, D. W., & Gibbon, J. (1988). Tracking a fluctuating environment: A study of sampling. Animal Behaviour, 36(1), 87–105.CrossRefGoogle Scholar
- Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250.PubMedCrossRefPubMedCentralGoogle Scholar
- Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545.CrossRefGoogle Scholar
- Silbert, A., Wolff, P. H., & Lilienthal, J. (1977). Spatial and temporal processing in patients with Turner’s syndrome. Behavior Genetics, 7(1), 11–21.PubMedPubMedCentralGoogle Scholar
- Simon, T. J. (2008). A new account of the neurocognitive foundations of impairments in space, time, and number processing in children with chromosome 22q11.2 deletion syndrome. Developmental Disabilities Research Reviews, 14(1), 52–58.PubMedPubMedCentralCrossRefGoogle Scholar
- Simon, T. J., Bearden, C. E., Mc-Ginn, D. M., & Zackai, E. (2005). Visuospatial and numerical cognitive deficits in children with chromosome 22q11.2 deletion syndrome. Cortex, 41(2), 145–155.PubMedPubMedCentralCrossRefGoogle Scholar
- Simon, T. J., Takarae, Y., DeBoer, T., McDonald-McGinn, D. M., Zackai, E. H., & Ross, J. L. (2008). Overlapping numerical cognition impairments in children with chromosome 22q11.2 deletion or Turner syndromes. Neuropsychologia, 46(1), 82–94.PubMedCrossRefPubMedCentralGoogle Scholar
- Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in Psychology, 5.Google Scholar
- Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101.Google Scholar
- Smith, A., Taylor, E., Rogers, J. W., Newman, S., & Rubia, K. (2002). Evidence for a pure time perception deficit in children with ADHD. Journal of Child Psychology and Psychiatry, 43(4), 529–542.PubMedCrossRefPubMedCentralGoogle Scholar
- Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2017). Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. NeuroImage, 146, 376–394.PubMedCrossRefPubMedCentralGoogle Scholar
- Srinivasan, M., & Carey, S. (2010). The long and the short of it: On the nature and origin of functional overlap between representations of space and time. Cognition, 116(2), 217–241.PubMedPubMedCentralCrossRefGoogle Scholar
- Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116–18120.CrossRefGoogle Scholar
- Starr, A., & Brannon, E. M. (2015). Developmental continuity in the link between sensitivity to numerosity and physical size. Journal of Numerical Cognition, 1(1), 7–20.Google Scholar
- Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153.PubMedCrossRefPubMedCentralGoogle Scholar
- Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A., & Toga, A. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190.PubMedCrossRefPubMedCentralGoogle Scholar
- Tipples, J. (2008). Negative emotionality influences the effects of emotion on time perception. Emotion, 8(1), 127.PubMedCrossRefPubMedCentralGoogle Scholar
- Tipples, J. (2011). When time stands still: Fear-specific modulation of temporal bias due to threat. Emotion, 11(1), 74–80.PubMedCrossRefPubMedCentralGoogle Scholar
- Tobia, V., Rinaldi, L., & Marzocchi, G. M. (2016). Time processing impairments in preschoolers at risk of developing difficulties in mathematics. Developmental Science. https://doi.org/10.1111/desc.12526
- Tudusciuc, O., & Nieder, A. (2010). Comparison of length judgments and the Müller-Lyer illusion in monkeys and humans. Experimental Brain Research, 207(3/4), 221–231.PubMedCrossRefPubMedCentralGoogle Scholar
- Tversky, B., Kugelmass, S., & Winter, A. (1991). Cross-cultural and developmental trends in graphic productions. Cognitive Psychology, 23(4), 515–557.CrossRefGoogle Scholar
- Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial–temporal association of response codes: Understanding the cognitive representations of time. Cognition, 107(2), 501–527.PubMedCrossRefPubMedCentralGoogle Scholar
- van der Knaap, M. S., van der Grond, J., van Rijen, P. C., Faber, J. A., Valk, J., & Willemse, K. (1990). Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology, 176(2), 509–515.PubMedCrossRefPubMedCentralGoogle Scholar
- Van Galen, M. S., & Reitsma, P. (2008). Developing access to number magnitude: A study of the SNARC effect in 7-to 9-year-olds. Journal of Experimental Child Psychology, 101(2), 99–113.PubMedCrossRefPubMedCentralGoogle Scholar
- VanMarle, K., & Wynn, K. (2006). Six-month-old infants use analog magnitudes to represent duration. Developmental Science, 9(5), F41–F49.PubMedCrossRefPubMedCentralGoogle Scholar
- Vasilyeva, M., & Lourenco, S. F. (2012). Development of spatial cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 349–362.PubMedPubMedCentralGoogle Scholar
- Venkatraman, V., Ansari, D., & Chee, M. W. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753.PubMedCrossRefPubMedCentralGoogle Scholar
- Vicario, C. M., Rappo, G., Pepi, A., Pavan, A., & Martino, D. (2012). Temporal abnormalities in children with developmental dyscalculia. Developmental Neuropsychology, 37(7), 636–652.PubMedCrossRefPubMedCentralGoogle Scholar
- Vicario, C. M., Yates, M. J., & Nicholls, M. E. (2013). Shared deficits in space, time, and quantity processing in childhood genetic disorders. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00043
- Vuokko, E., Niemivirta, M., & Helenius, P. (2013). Cortical activation patterns during subitizing and counting. Brain Research, 1497, 40–52.PubMedCrossRefPubMedCentralGoogle Scholar
- Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.PubMedCrossRefPubMedCentralGoogle Scholar
- Walsh, V., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation: A neurochronometrics of mind. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
- Wang, J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82–99.PubMedCrossRefPubMedCentralGoogle Scholar
- Wearden, J. H., Norton, R., Martin, S., & Montford-Bebb, O. (2007). Internal clock processes and the filled-duration illusion. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 716.PubMedPubMedCentralGoogle Scholar
- Westerberg, H., Hirvikoski, T., Forssberg, H., & Klingberg, T. (2004). Visuo-spatial working memory span: a sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychology, 10(3), 155–161.PubMedCrossRefPubMedCentralGoogle Scholar
- Woodward, A. L., Markman, E. M., & Fitzsimmons, C. M. (1994). Rapid word learning in 13-and 18-month-olds. Developmental Psychology, 30(4), 553.CrossRefGoogle Scholar
- Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11.PubMedCrossRefPubMedCentralGoogle Scholar
- Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 2–2.PubMedCrossRefPubMedCentralGoogle Scholar
- Yang, T., Chen, C., Zhou, X., Xu, J., Dong, Q., & Chen, C. (2014). Development of spatial representation of numbers: A study of the SNARC effect in Chinese children. Journal of Experimental Child Psychology, 117, 1–11.PubMedCrossRefPubMedCentralGoogle Scholar
- Yates, M. J., Loetscher, T., & Nicholls, M. E. (2012). A generalized magnitude system for space, time, and quantity? A cautionary note. Journal of Vision, 12(7), 9–9.PubMedCrossRefPubMedCentralGoogle Scholar
- Young, L., & Cordes, S. (2013). Fewer things, lasting longer the effect of emotion on quantity judgments. Psychological Science https://doi.org/10.1177/0956797612465294
- Zimmermann, E., & Fink, G. R. (2016). Numerosity perception after size adaptation. Scientific Reports, 6, 32810.PubMedPubMedCentralCrossRefGoogle Scholar
- Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138–139.PubMedCrossRefPubMedCentralGoogle Scholar