Advertisement

On some of the main criticisms of the modal model: Reappraisal from a TBRS perspective

  • Gaën PlancherEmail author
  • Pierre Barrouillet
Article

Abstract

The model developed by Atkinson and Shiffrin describes memory as a flow of information that enters and leaves a short-term storage and that in some cases consolidates into a long-term store. Their model has stimulated 50 years of memory research and, like every model, has also received several criticisms. It has been argued that a single short-term store in charge of both maintaining memory items and processing other cognitive tasks is not plausible. Some authors have evaluated the proposal of a rehearsal process as the unique way to transfer information into long-term memory as not being likely. Finally, the idea that information decays from the short-term store in the absence of rehearsal maintaining the memory traces has been and is still debated in the working memory literature. In this article, we reconsider these criticisms and show why they are not totally legitimate. We describe a recent working memory model, the time-based resource-sharing (TBRS) model (Barrouillet, P., & Camos, V. (2015). Working memory: Loss and reconstruction. Hove, UK: Psychology Press), that shares several theoretical assumptions with the model initially proposed by Atkinson and Shiffrin, assumptions supported by empirical findings. Consequently, the model proposed by Atkinson and Shiffrin in 1968 may be far from outdated and still provide an inspiring framework for memory study.

Keywords

Working memory Short-term memory Modal model TBRS model 

Notes

Acknowledgements

This research was supported by LABEX grant ANR-11-LABX-0042 from the Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

References

  1. Anderson, J. R., Reder, L. M., & Lebière, C. (1996). Working memory: Activation limitations on retrieval. Cognitive Psychology, 30, 221–256.CrossRefGoogle Scholar
  2. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). New York, NY: Academic Press.Google Scholar
  3. Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225(2), 82–90.  https://doi.org/10.1038/scientificamerican0871-82 CrossRefPubMedGoogle Scholar
  4. Baddeley, A. (1986). Working memory. Oxford, UK: Oxford University Press, Clarendon Press.  https://doi.org/10.1016/S0079-7421(08)60452-1 CrossRefGoogle Scholar
  5. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York, NY: Academic Press.  https://doi.org/10.1016/S0079-7421(08)60452-1 Google Scholar
  6. Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple-component model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  7. Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575–589.  https://doi.org/10.1016/S0022-5371(75)80045-4 CrossRefGoogle Scholar
  8. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83–100.  https://doi.org/10.1037/0096-3445.133.1.83 CrossRefGoogle Scholar
  9. Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 570–585.  https://doi.org/10.1037/0278-7393.33.3.570 CrossRefPubMedGoogle Scholar
  10. Barrouillet, P., & Camos, V. (2012). As time goes by: Temporal constraints in working memory. Current Directions in Psychological Science, 21, 413–419.  https://doi.org/10.1177/0963721412459513 CrossRefGoogle Scholar
  11. Barrouillet, P., & Camos, V. (2014). On the proper reading of the TBRS model: Reply to Oberauer and Lewandowsky (2014). Frontiers in Psychology, 5, 1331.  https://doi.org/10.3389/fpsyg.2014.01331 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barrouillet, P., & Camos, V. (2015). Working memory: Loss and reconstruction. Hove, UK: Psychology Press.Google Scholar
  13. Barrouillet, P., De Paepe, A., & Langerock, N. (2012). Time causes forgetting from working memory. Psychonomic Bulletin & Review, 19, 87–92.  https://doi.org/10.3758/s13423-011-0192-8 CrossRefGoogle Scholar
  14. Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard, V., & Camos, V. (2009). Working memory span development: A time-based resource-sharing model account. Developmental Psychology, 45, 477–490.  https://doi.org/10.1037/a0014615 CrossRefPubMedGoogle Scholar
  15. Barrouillet, P., Plancher, G., Guida, A., & Camos, V. (2013). Forgetting at short term: When do event-based interference and temporal factors have an effect? Acta Psychologica, 142, 155–167.  https://doi.org/10.1016/j.actpsy.2012.12.003 CrossRefPubMedGoogle Scholar
  16. Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118, 175–192.  https://doi.org/10.1037/a0022324 CrossRefPubMedGoogle Scholar
  17. Barrouillet, P., Uittenhove, K., Lucidi, A., & Langerock, N. (2017). On the sources of forgetting in working memory: The test of competing hypotheses. Quarterly Journal of Experimental Psychology, 20, 1–46.  https://doi.org/10.1080/17470218.2017.1358293 CrossRefGoogle Scholar
  18. Box, G. E. P., & Draper, N. R. (1987). Empirical model building and response surfaces. New York, NY: Wiley.Google Scholar
  19. Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21.  https://doi.org/10.1080/17470215808416249 CrossRefGoogle Scholar
  20. Camos, V. (2015). Storing verbal information in working memory. Current Directions in Psychological Science, 24, 440–445.  https://doi.org/10.1177/0963721415606630 CrossRefGoogle Scholar
  21. Camos, V. (2017). Domain-specific versus domain-general maintenance in working memory: Reconciliation within the time-based resource sharing model. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 67, pp. 135–171). San Diego, CA: Elsevier Academic Press.  https://doi.org/10.1016/bs.plm.2017.03.005 CrossRefGoogle Scholar
  22. Camos, V., Johnson, M., Loaïza, V., Portrat, S., Souza, A., & Vergauwe, E. (2018). What is attentional refreshing in working memory? Annals of the New York Academy of Sciences, 1424, 19–32.  https://doi.org/10.1111/nyas.13616 CrossRefPubMedGoogle Scholar
  23. Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61, 457–469.  https://doi.org/10.1016/j.jml.2009.06.002 CrossRefGoogle Scholar
  24. Camos, V., Mora, G., & Barrouillet, P. (2013). Phonological similarity effect in complex span task. Quarterly Journal of Experimental Psychology, 66, 1927–1950.  https://doi.org/10.1080/17470218.2013.768275 CrossRefGoogle Scholar
  25. Camos, V., & Portrat, S. (2015). The impact of cognitive load on delayed recall. Psychonomic Bulletin & Review, 22, 1029–1034.  https://doi.org/10.3758/s13423-014-0772-5 CrossRefGoogle Scholar
  26. Case, R., Kurland, M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404.CrossRefGoogle Scholar
  27. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104, 163–191.  https://doi.org/10.1037/0033-2909.104.2.163 CrossRefPubMedGoogle Scholar
  28. Cowan, N. (1992). Verbal memory span and the timing of spoken recall. Journal of Memory and Language, 31, 668–684.CrossRefGoogle Scholar
  29. Cowan, N. (1995). Attention and memory: An integrated framework. New York, NY: Oxford University Press.Google Scholar
  30. Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  31. Cowan, N. (2005). Working memory capacity. Hove, UK: Psychology Press.  https://doi.org/10.4324/9780203342398 CrossRefGoogle Scholar
  32. Cowan, N., Rouder, J. N., Blume, C. L., & Saults, J. S. (2012). Models of verbal working memory capacity: What does it take to make them work? Psychological Review, 119, 480–499.  https://doi.org/10.1037/a0027791 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cowan, N., Saults, J. S., & Elliott, E. M. (2002). The search for what is fundamental in the development of working memory. Advances in Child Development and Behavior, 29, 1–49.  https://doi.org/10.1016/S0065-2407(02)80050-7 CrossRefPubMedGoogle Scholar
  34. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Leaning and Verbal Behavior, 11, 671–684.  https://doi.org/10.1016/S0022-5371(72)80001-X CrossRefGoogle Scholar
  35. Craik, F. I. M., & Watkins, M. J. (1973). The role of rehearsal in short-term memory. Journal of Verbal Learning and Verbal Behavior, 12, 599–607.  https://doi.org/10.1016/S0022-5371(73)80039-8 CrossRefGoogle Scholar
  36. Dagry, I., & Barrouillet, P. (2017). The fate of distractors in working memory: No evidence for their active removal. Cognition, 169, 129–138.  https://doi.org/10.1016/j.cognition.2017.08.011 CrossRefPubMedGoogle Scholar
  37. Dagry, I., Vergauwe, E., & Barrouillet, P. (2017). Cleaning working memory: The fate of distractors. Journal of Memory and Language, 92, 327–342.  https://doi.org/10.1016/j.jml.2016.08.002 CrossRefGoogle Scholar
  38. Darley, C. F., & Glass, A. L. (1975). Effects of rehearsal and serial list position on recall. Journal of Experimental Psychology: Human Learning and Memory, 1, 453–458.  https://doi.org/10.1037/0278-7393.1.4.453 CrossRefGoogle Scholar
  39. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.  https://doi.org/10.1016/0010-0277(92)90049-N CrossRefPubMedGoogle Scholar
  40. Doherty, J. M., Belletier, C., Rhodes, S., Jaroslawska, A., Barrouillet, P., Camos, V., … Logie, R. H. (2019). Dual-task costs in working memory: An adversarial collaboration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45, 1529–1551.  https://doi.org/10.1037/xlm0000668 CrossRefPubMedGoogle Scholar
  41. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331.  https://doi.org/10.1037/0096-3445.128.3.309 CrossRefGoogle Scholar
  42. Estes, W. K. (1972). An associative basis for coding and organization in memory. In A. W. Melton & E. Martin (Eds.), Coding processes in human memory (pp. 161–190). Washington, DC: Winston.Google Scholar
  43. Fanuel, L., Plancher, G., Monsaingeon, N., Tillmann, B., & Portrat, S. (2018a). Temporal dynamics of maintenance in young and old adults. Annals of the New York Academy of Sciences, 1424, 137–148.  https://doi.org/10.1111/nyas.13640 CrossRefPubMedGoogle Scholar
  44. Fanuel, L., Portrat, S., Tillmann, B., & Plancher, G. (2018b). Temporal regularities allow saving time for maintenance in working memory. Annals of the New York Academy of Sciences, 1424, 202–211.  https://doi.org/10.1111/nyas.13611 CrossRefPubMedGoogle Scholar
  45. Farrell, S., & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9, 59–79.  https://doi.org/10.3758/BF03196257 CrossRefGoogle Scholar
  46. Glenberg, A., Smith, S. M., & Green, C. (1977). Type I rehearsal: Maintenance and more. Journal of Verbal Learning and Verbal Behavior, 16, 339–352.  https://doi.org/10.1016/S0022-5371(77)80055-8 CrossRefGoogle Scholar
  47. Jarjat, G., Hoareau, V., Plancher, G., Hot, P., Lemaire, B., & Portrat, S. (2018). What makes working memory traces stable over time? Annals of the New York Academy of Sciences, 1424, 149–160.  https://doi.org/10.1111/nyas.13668 CrossRefPubMedGoogle Scholar
  48. Johnson, M. K. (1992). MEM: Mechanisms of recollection. Journal of Cognitive Neuroscience, 4, 268–280.  https://doi.org/10.1162/jocn.1992.4.3.268 CrossRefPubMedGoogle Scholar
  49. Johnson, M. K., Mitchell, K. J., Raye, C. L., & Greene, E. J. (2004). An age-related deficit in prefrontal cortical function associated with refreshing information. Psychological Science, 15, 127–132.Google Scholar
  50. Johnson, M. R., & Johnson, M. K. (2009). Top-down enhancement and suppression of activity in category-selective extrastriate cortex from an act of reflective attention. Journal of Cognitive Neuroscience, 21, 2320–2327.CrossRefGoogle Scholar
  51. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.  https://doi.org/10.1037/0033-295X.99.1.122 CrossRefPubMedGoogle Scholar
  52. Lee, C. L., & Estes, W. K. (1977). Order and position in primary memory for letter strings. Journal of Verbal Learning and Verbal Behavior, 16, 395–418.CrossRefGoogle Scholar
  53. Lee, C. L., & Estes, W. K. (1981). Item and order information in short-term memory: Evidence for multilevel perturbation processes. Journal of Experimental Psychology: Human Learning and Memory, 7, 149–169.  https://doi.org/10.1037/0278-7393.7.3.149 CrossRefGoogle Scholar
  54. Lehman, M., & Malmberg, K. J. (2009). A global theory of remembering and forgetting from multiple lists. Journal of Experimental Psychology: Learning Memory and Cognition, 35, 970–988.  https://doi.org/10.1037/a0015728 CrossRefGoogle Scholar
  55. Lehman, M., & Malmberg, K. J. (2011). Overcoming the effects of intentional forgetting. Memory and Cognition, 39, 335–347.  https://doi.org/10.3758/s13421-010-0025-4 CrossRefPubMedGoogle Scholar
  56. Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory encoding and temporal correlations in retrieval. Psychological Review, 120, 155–189.  https://doi.org/10.1037/a0030851 CrossRefPubMedGoogle Scholar
  57. Lemaire, B., Pageot, A., Plancher, G., & Portrat, S. (2018). What is the time course of working memory attentional refreshing? Psychonomic Bulletin & Review, 25, 370–385.  https://doi.org/10.3758/s13423-017-1282-z CrossRefGoogle Scholar
  58. Lewandowsky, S., Geiger, S. M., Morrell, D. B., & Oberauer, K. (2010). Turning simple span into complex span: Time for decay or interference from distractors? Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 958–978.  https://doi.org/10.1037/a0019764 CrossRefPubMedGoogle Scholar
  59. Lewandowsky, S., Geiger, S. M., & Oberauer, K. (2008). Interference-based forgetting in verbal short-term memory. Journal of Memory and Language, 59, 200–222.  https://doi.org/10.1016/j.jml.2008.04.004 CrossRefGoogle Scholar
  60. Lewandowsky, S., & Oberauer, K. (2015). Rehearsal in serial recall: An unworkable solution to the nonexistent problem of decay. Psychological Review, 122, 674–699.  https://doi.org/10.1037/a0039684 CrossRefPubMedGoogle Scholar
  61. Lewandowsky, S., Oberauer, K., & Brown, G. D. A. (2009). No temporal decay in verbal short-term memory. Trends in Cognitive Sciences, 13, 120–126.  https://doi.org/10.1016/j.tics.2008.12.003 CrossRefPubMedGoogle Scholar
  62. Loaiza, V. M., & McCabe, D. P. (2012). Temporal–contextual processing in working memory: Evidence from delayed cued recall and delayed free recall tests. Memory & Cognition, 40, 191–203.  https://doi.org/10.3758/s13421-011-0148-2148-2 CrossRefGoogle Scholar
  63. Lovett, M. C., Reder, L. M., & Lebière, C. (1999). Modeling working memory in a unified architecture: An ACT-R perspective. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 135–182). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  64. Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17, 347–356.  https://doi.org/10.1038/nn.3655.CrossRefPubMedPubMedCentralGoogle Scholar
  65. McCabe, D. P. (2008). The role of covert retrieval in working memory span tasks: Evidence from delayed recall tests. Journal of Memory and Language, 58, 480–494.  https://doi.org/10.1016/j.jml.2007.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mora, G., & Camos, V. (2013). Two systems of maintenance in verbal working memory: Evidence from the word length effect. PLoS ONE, 8, e70026.  https://doi.org/10.1371/journal.pone.0070026 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18, 251–269.  https://doi.org/10.3758/BF03213879 CrossRefGoogle Scholar
  68. Nelson, T. O. (1977). Repetition and depth of processing. Journal of Verbal Learning and Verbal Behavior, 16, 151–171.  https://doi.org/10.1016/S0022-5371(77)80044-3 CrossRefGoogle Scholar
  69. Norris, D. (2017). Short-term memory and long-term memory are still different. Psychological Bulletin, 143, 992–1009.  https://doi.org/10.1037/bul0000108 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411–421.  https://doi.org/10.1037/0278-7393.28.3.411 CrossRefPubMedGoogle Scholar
  71. Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142, 758–799.  https://doi.org/10.1037/bul0000046 CrossRefPubMedGoogle Scholar
  72. Oberauer, K., & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55, 601–626.  https://doi.org/10.1016/j.jml.2006.08.009 CrossRefGoogle Scholar
  73. Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142, 380–411.  https://doi.org/10.1037/a0029588 CrossRefGoogle Scholar
  74. Oberauer, K., & Lewandowsky. S. (2014). Further evidence against decay in working memory. Journal of Memory and Language, 73, 15–30.Google Scholar
  75. Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779–819.  https://doi.org/10.3758/s13423-012-0272-4 CrossRefGoogle Scholar
  76. Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761–781.  https://doi.org/10.1037/0033-295X.105.4.761-781 CrossRefPubMedGoogle Scholar
  77. Pashler, H. (1998). The psychology of attention. Cambridge, MA: MIT Press.Google Scholar
  78. Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.  https://doi.org/10.1037/h0049234 CrossRefPubMedGoogle Scholar
  79. Plancher, G., & Barrouillet, P. (2013). Forgetting from working memory: Does novelty encoding matter? Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 110–125.  https://doi.org/10.1037/a0028475 CrossRefPubMedGoogle Scholar
  80. Plancher, G., Boyer, H., Lemaire, B., & Portrat, S. (2017). Under which conditions can older participants maintain information in working memory? Experimental Aging Research, 43, 409–429.  https://doi.org/10.1080/0361073X.2017.1369730.CrossRefPubMedGoogle Scholar
  81. Plancher, G., Lévêque, Y., Fanuel, L., Piquandet, G., & Tillmann, B. (2018). Boosting maintenance in working memory with temporal regularities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 812–818.  https://doi.org/10.1037/xlm0000481.CrossRefPubMedGoogle Scholar
  82. Portrat, S., Barrouillet, P., & Camos, V. (2008). Time-related decay or interference-based forgetting in working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1561–1564.  https://doi.org/10.1037/a0013356 CrossRefPubMedGoogle Scholar
  83. Raye, C. L., Johnson, M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. (2007). Refreshing: A minimal executive function. Cortex, 43, 135–145.  https://doi.org/10.1016/S0010-9452(08)70451-9 CrossRefPubMedGoogle Scholar
  84. Rey, A., Versace, R., & Plancher, G. (2018). When a reactivated visual mask disrupts serial recall: Evidence that refreshing relies on memory traces reactivation in working memory. Experimental Psychology, 65, 263–271.  https://doi.org/10.1027/1618-3169/a000414 CrossRefPubMedGoogle Scholar
  85. Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within s: The combined use of refreshable and non-refreshable features. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1355–1368.  https://doi.org/10.1037/a0020356 CrossRefPubMedGoogle Scholar
  86. Ricker, T. J., Vergauwe, E., & Cowan, N. (2014). Decay theory of immediate memory: From Brown (1958) to today (2014). Quarterly Journal of Experimental Psychology, 69, 1969–1995.  https://doi.org/10.1080/17470218.2014.914546 CrossRefGoogle Scholar
  87. Saito, S., & Miyake, A. (2004). On the nature of forgetting and the processing–storage relationship in reading span performance. Journal of Memory and Language, 50, 425–443.CrossRefGoogle Scholar
  88. Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261–273.CrossRefGoogle Scholar
  89. Shiffrin, R. M. (1975). Short-term store: The basis for a memory system. In F. Restle, R. M. Shiffrin, N. J. Castellan, H. Lindman, & D. B. Pisoni (Eds.), Cognitive theory (Vol. 1, pp. 193–218). Hillsdale, NJ: Erlbaum.Google Scholar
  90. Souza, A. S., & Oberauer, K. (2017). Time to process information in working memory improves episodic memory. Journal of Memory and Language, 96, 155–167.  https://doi.org/10.1016/j.jml.2017.07.002 CrossRefGoogle Scholar
  91. Souza, A. S., Rerko, L., & Oberauer, K. (2015). Refreshing memory traces: Thinking of an item improves retrieval from visual working memory. Annals of the New York Academy of Sciences, 1339, 20–31.  https://doi.org/10.1111/nyas.12603 CrossRefPubMedGoogle Scholar
  92. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654.CrossRefGoogle Scholar
  93. Sternberg, S. (2016). In defence of high-speed memory scanning. Quarterly Journal of Experimental Psychology, 69, 2020–2075.  https://doi.org/10.1080/17470218.2016.1198820 CrossRefGoogle Scholar
  94. Towse, J. N., & Hitch, G. J. (1995). Is there a relationship between task demand and storage space in tests of working memory capacity? Quarterly Journal of Experimental Psychology, 48A, 108–124.  https://doi.org/10.1080/14640749508401379 CrossRefGoogle Scholar
  95. Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104–132.  https://doi.org/10.1037/0033-295X.114.1.104 CrossRefPubMedGoogle Scholar
  96. Vergauwe, E., Barrouillet, P., & Camos, V. (2009). Visual and spatial working memory are not that dissociated after all: A time-based resource-sharing account. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1012–1028.  https://doi.org/10.1037/a0015859 CrossRefPubMedGoogle Scholar
  97. Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21, 384–390.  https://doi.org/10.1177/0956797610361340 CrossRefPubMedGoogle Scholar
  98. Vergauwe, E., Camos, V., & Barrouillet, P. (2014). The impact of storage on processing: How is information maintained in working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1072–1095.  https://doi.org/10.1037/a0035779 CrossRefPubMedGoogle Scholar
  99. Vergauwe, E., & Cowan, N. (2014). A common short-term memory retrieval rate may describe many cognitive procedures. Frontiers in Human Neuroscience, 8, 126.  https://doi.org/10.3389/fnhum.2014.00126 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Vergauwe, E., & Cowan, N. (2015). Attending to items in working memory: Evidence that refreshing and memory search are closely related. Psychonomic Bulletin & Review, 22, 1001–1006.  https://doi.org/10.3758/s13423-014-0755-6 CrossRefGoogle Scholar
  101. Warrington, E. K., & Shallice, T. (1969). The selective impairment of auditory verbal short-term memory. Brain, 92, 885–896.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Université Lyon 2LyonFrance
  2. 2.Université de GenèveGenevaSwitzerland

Personalised recommendations