Semantic associations between arithmetic and space: Evidence from temporal order judgements

  • Michael Andres
  • Samuel Salvaggio
  • Nathalie Lefèvre
  • Mauro Pesenti
  • Nicolas MassonEmail author


Spatial biases associated with subtraction or addition problem solving are generally considered as reflecting leftward or rightward attention shifts along a mental numerical continuum, but an alternative hypothesis not implying spatial attention proposes that the operator (plus or minus sign) may favour a response to one side of space (left or right) because of semantic associations. We tested these two accounts in a series of temporal order judgement experiments that consisted in the auditory presentation of addition or subtraction problems followed 200 ms (Experiments 12) or 800 ms (Experiment 3) later by the display of two lateralized targets in close temporal succession. To dissociate the side where the operation first brought their attention from the side they had to respond to, we asked participants to report which of the left or right target appeared first or last on screen. Under the attention-orienting account, addition should elicit more rightward responses than subtraction when participants have to focus on the first target, but more leftward responses when they have to focus on the last target, because the latter is opposite to the side where the operation first brought their attention. Under the semantic account, addition should elicit more rightward responses than subtraction, no matter the focus is on the first or last target, because participants should systematically favour the side conceptually linked to the operator. The results of the three experiments converge to indicate that, in lateralized target detection tasks, the spatial biases induced by arithmetic operations stem from semantic associations.


mathematical cognition semantic priming spatial cognition attention number processing 



The authors have no conflict of interest to declare. M.A. is a research associate, M.P a senior research associate, at the Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium). N.M. is a postdoctoral researcher funded by grant PDR-FNRS T.0047.18 to MP, and S.S. is a doctoral student funded by grant PDR-FNRS T.0245.16 to MA from the Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium). We thank Pascaline Le Maire, Marion Deldicque, and Stuart Dale for their help in data collection.

Data sharing statement

The dataset of each experiment is available in the Open Science Foundation repository with a CC-O licence, None of the experiments were preregistered.


  1. Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus–response compatibility in representational space. Neuropsychologia, 36(8), 731–735. CrossRefPubMedGoogle Scholar
  2. Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition, 102, 101–117. CrossRefPubMedGoogle Scholar
  3. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 4, 1–42. CrossRefGoogle Scholar
  4. Dormal, V., Schuller, A. M., Nihoul, J., Pesenti, M., & Andres, M. (2014). Causal role of spatial attention in arithmetic problem solving: Evidence from left unilateral neglect. Neuropsychologia, 60, 1–9. CrossRefPubMedGoogle Scholar
  5. Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110.CrossRefGoogle Scholar
  6. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. CrossRefPubMedGoogle Scholar
  7. Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006). Automatic response activation of implicit spatial information: Evidence from SNARC effect. Acta Psychologica, 122, 221–233. CrossRefPubMedGoogle Scholar
  8. Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number–space interactions. Journal of Experimental Psychology: General, 139(1), 180–190. CrossRefGoogle Scholar
  9. Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: Evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hartmann, M., Mast, F. W., & Fischer, M. H. (2016). Counting is a spatial process: Evidence from eye movements. Psychological Research, 80(3), 399–409. CrossRefPubMedGoogle Scholar
  11. Hayes, J. R. (1973). On the function of visual imagery in elementary mathematics. In W. G. Chase (Ed.), Visual information processing (pp. 177–214). New York, NY: Academic Press. CrossRefGoogle Scholar
  12. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448. CrossRefPubMedGoogle Scholar
  13. Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009b). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585. CrossRefPubMedGoogle Scholar
  14. Knops, A., Viarouge, A., & Dehaene, S. (2009a). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71, 803–821. CrossRefGoogle Scholar
  15. Lakoff, G., & Nunez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.Google Scholar
  16. Liu, D., Cai, D., Verguts, T., & Chen, Q. (2017b). The time course of spatial attention shifts in elementary arithmetic. Scientific Reports, 7(1), 921. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu, D., Verguts, T., Li, M., Ling, Z., & Chen, Q. (2017a). Dissociated spatial–arithmetic associations in horizontal and vertical dimensions. Frontiers in Psychology.
  18. Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265. CrossRefPubMedGoogle Scholar
  19. Marghetis, T., Núñez, R., & Bergen, B. K. (2014). Doing arithmetic by hand: Hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology, 67(8), 1579–1596. CrossRefPubMedGoogle Scholar
  20. Masson, N., Letesson, C., & Pesenti, M. (2018). Time course of overt attentional shifts in mental arithmetic: Evidence from gaze metrics. The Quarterly Journal of Experimental Psychology, 71(4), 1009–1019. CrossRefPubMedGoogle Scholar
  21. Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology, 67, 1514–1526. CrossRefPubMedGoogle Scholar
  22. Masson, N., & Pesenti, M. (2016). Interference of lateralized distractors on arithmetic problem solving: A functional role for attention shifts in mental calculation. Psychological Research, 80, 640–651. CrossRefPubMedGoogle Scholar
  23. Masson, N., Pesenti, M., Coyette, F., Andres, M., & Dormal, V. (2017a). Shifts of spatial attention underlie numerical comparison and mental arithmetic: Evidence from a patient with right unilateral neglect. Neuropsychology, 31(7), 822–833. CrossRefPubMedGoogle Scholar
  24. Masson, N., Pesenti, M., & Dormal, V. (2017b). Impact of optokinetic stimulation on mental arithmetic. Psychological Research, 81(4), 840–849. CrossRefPubMedGoogle Scholar
  25. Mathieu, R., Epinat-Duclos, J., Sigovan, M., Breton, A., Cheylus, A., Fayol, M., … Prado, J. (2018). What’s behind a “+” sign? Perceiving an arithmetic operator recruits brain circuits for spatial orienting. Cerebral Cortex, 28(5), 1673–1684. CrossRefPubMedGoogle Scholar
  26. Mathieu, R., Gourjon, A., Couderc, A., Thevenot, C., & Prado, J. (2016). Running the number line: Rapid shifts of attention in single-digit arithmetic. Cognition, 146, 229–239. CrossRefPubMedGoogle Scholar
  27. McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69, 1324–1333. CrossRefGoogle Scholar
  28. Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1/2), 8–13. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pinhas, M., & Fischer, M. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408–415. CrossRefPubMedGoogle Scholar
  30. Pinhas, M., Shaki, S., & Fischer, M.H., (2014). Heed the signs: Operation signs have spatial associations. The Quarterly Journal of Experimental Psychology, 67(8), 1527–1540. CrossRefPubMedGoogle Scholar
  31. Pinheiro-Chagas, P., Dotan, D., Piazza, M., & Dehaene, S. (2017). Finger tracking reveals the covert stages of mental arithmetic. Open Mind, 1(1), 30–41. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416–442. CrossRefPubMedGoogle Scholar
  33. Stelmach, L. B., & Herdman, C. M. (1991). Directed attention and perception of temporal order. Journal of Experimental Psychology: Human Perception and Performance, 17, 539–550. CrossRefPubMedGoogle Scholar
  34. van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119. CrossRefPubMedGoogle Scholar
  35. Wiemers, M., Bekkering, H., & Lindemann, O. (2014). Spatial interferences in mental arithmetic: Evidence from the motion–arithmetic compatibility effect. The Quarterly Journal of Experimental Psychology, 67(8), 1557–1570. CrossRefPubMedGoogle Scholar
  36. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13(2), 314–327. CrossRefPubMedGoogle Scholar
  37. Zago, L., Petit, L., Turbelin, M. R., Andersson, F., Vigneau, M., & Tzourio-Mazoyer, N. (2008). How verbal and spatial manipulation networks contribute to calculation: An fMRI study. Neuropsychologia, 46(9), 2403–2414. CrossRefPubMedGoogle Scholar
  38. Zénon, A., Solopchuk, O., & Pezzulo G. (2019). An information-theoretic perspective on the costs of cognition. Neuropsychologia, 123, 5–18. CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Psychological Sciences Research InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Institute of NeuroscienceUniversité catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Louvain Institute of Data Analysis and Modeling in economics and statisticsUniversité catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Department of PsychologyUniversity of TübingenTübingenGermany

Personalised recommendations