Advertisement

Memory facilitation for emotional faces: Visual working memory trade-offs resulting from attentional preference for emotional facial expressions

  • Hyejin J. Lee
  • Yang Seok ChoEmail author
Article
  • 43 Downloads

Abstract

Visual working memory (VWM) for faces is facilitated when they display negative facial expressions. The present study manipulated the emotional heterogeneity of the encoding display in a change detection task to examine whether VWM is enhanced by having a separate memory store or by a bias in the allocation of limited attentional resource. When the encoding display was emotionally heterogeneous, regardless of whether happy or fearful facial expressions were presented, memory for emotional faces increased while memory for neutral faces decreased, indicating a memory trade-off. To investigate whether this occurred as a result of preferential allocation of attentional resource towards emotional expressions over neutral ones, faces were shown sequentially in different quadrants of the display. The memory trade-off between happy and neutral faces disappeared but persisted between fearful and neutral faces at trailing serial positions. When blank intervals were inserted between faces to prevent fearful faces from having prolonged processing that consumes attentional resource that should be shared with neutral faces, the memory trade-off disappeared. Findings support the argument that emotional expressions facilitate VWM due to their bias in obtaining attentional resource but the exact mechanisms through which limited resource is allocated between happy and fearful expressions may differ.

Keywords

Visual working memory Emotion Facial expression Change detection 

Notes

Acknowledgements

This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015M3C7A1031969).

References

  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.CrossRefGoogle Scholar
  2. Arnell, K. M., Killman, K., & Fijavz, D. (2004). Blinded by emotions: target misses follow attentional capture by arousing distractors in RSVP. Journal of Vision, 4, 359.CrossRefGoogle Scholar
  3. Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321, 851-854.CrossRefGoogle Scholar
  4. Becker, D. V., Anderson, U. S., Mortensen, C. R., Neufeld, S. L., & Neel, R. (2011). The face in the crowd effect unconfounded: happy faces, not angry faces, are more efficiently detected in single-and multiple-target visual search tasks. Journal of Experimental Psychology: General, 140(4), 637-659.CrossRefGoogle Scholar
  5. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.CrossRefGoogle Scholar
  6. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., Strauss, M. M., Hyman, S. E., & Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875-887.CrossRefGoogle Scholar
  7. Bridge, D. J., Chian, J. Y., & Paller, K. A. (2010). Emotional context at learning systematically biases memory for facial information. Memory & Cognition, 38(2), 125-133.CrossRefGoogle Scholar
  8. Bruce, V. & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305-327.CrossRefGoogle Scholar
  9. Burton, A. M., Young, A. W., Bruce, V., Johnston, R. A., & Ellis, A. W. (1991). Understanding covert recognition. Cognition, 39(2), 129-166.CrossRefGoogle Scholar
  10. Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109-127.Google Scholar
  11. Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K., & Alvarez, G. A. (2014). Processing multiple visual objects is limited by overlap in neural channels. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8955–8960.CrossRefGoogle Scholar
  12. Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(10), 51-57.CrossRefGoogle Scholar
  13. D’Argembeau, A., & Van der Linden, M. (2004). Identity but not expression memory for unfamiliar faces is affected by ageing. Memory, 12(5), 644-654.CrossRefGoogle Scholar
  14. D’Argembeau, A., & Van der Linden, M. (2007). Facial expressions of emotion influence memory for facial identity in an automatic way. Emotion, 7(3), 507-515.CrossRefGoogle Scholar
  15. Eimer, M., & Kiss, M. (2007). Attentional capture by task-irrelevant fearful faces is revealed by the N2pc component. Biological Psychology, 74(1), 108-112.CrossRefGoogle Scholar
  16. Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12, 1127-1133.CrossRefGoogle Scholar
  17. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191.CrossRefGoogle Scholar
  18. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149-1160.CrossRefGoogle Scholar
  19. Gallegos, D. R., & Tranel, D. (2005). Positive facial affect facilitates the identification of famous faces. Biological Psychology, 93(3), 338-348.Google Scholar
  20. Ganel, T., Valyear, K. F., Goshen-Gottstein, Y., & Goodale, M. A. (2005). The involvement of the “fusiform face area” in processing facial expression. Neuropsychologia, 43(11), 1645–1654.CrossRefGoogle Scholar
  21. Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience, 2(3), 289.CrossRefGoogle Scholar
  22. Hancock, P. J., Bruce, V., & Burton, A. M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4(9), 330-337.CrossRefGoogle Scholar
  23. Hansen, C. H., & Hansen, R. D. (1988). Finding the face in the crowd: an anger superiority effect. Journal of Personality and Social Psychology, 54(6), 917.CrossRefGoogle Scholar
  24. Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behavioural Brain Research, 32(3), 203-218.CrossRefGoogle Scholar
  25. Hunt, A. R., Cooper, R. M., Hungr, C., & Kingstone, A. (2007). The effect of emotional faces on eye movements and attention. Visual Cognition, 15(5), 513-531.CrossRefGoogle Scholar
  26. Jackson, M. C., Linden, D. E. J., & Raymond, J. E. (2014). Angry expressions strengthen the encoding and maintenance of face identity representations in visual working memory. Cognition & Emotion, 29(2), 278-297.CrossRefGoogle Scholar
  27. Jackson, M. C., Wolf, C., Johnston, S. J., Raymond, J. E., & Linden, D. E. J. (2008). Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study. PLoS ONE, 2(10), e3536.CrossRefGoogle Scholar
  28. Jackson, M. C., Wu, C.-Y., Linden, D. E. J., & Raymond, J. E. (2009). Enhanced visual short-term memory for angry faces. Journal of Experimental Psychology: Human Perception & Performance, 35(2), 363-374.Google Scholar
  29. Jiang, Y. V., Remington, R. W., Asaad, A., Lee, H. J., & Mikkalson, T. C. (2016). Remembering faces and scenes: the mixed-category advantage in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 42(9), 1399-1411.Google Scholar
  30. Juth, P., Lundqvist, D., Karlsson, A., & Öhman, A. (2005). Looking for foes and friends: perceptual and emotional factors when finding a face in the crowd. Emotion, 5(4), 379.CrossRefGoogle Scholar
  31. Kaufmann, J. M., & Schweinberger, S. R. (2004). Expression influences the recognition of familiar faces. Perception, 33, 399-408.CrossRefGoogle Scholar
  32. Kensinger, E. A., & Corkin, S. (2003). Effect of negative emotional content on working memory and long-term memory. Emotion, 3(4), 378.CrossRefGoogle Scholar
  33. Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage, 20(4), 2091-2099.CrossRefGoogle Scholar
  34. Kim, S., Kwon, Y., Jung, S., Kim, M., Cho, Y. S., Kim, H., Nam, K., Kim, H., Choi, K., & Choi, J. (2017). Development of the Korean facial emotion stimuli: Korea university facial expression collection 2nd edition. Frontiers in Psychology, 8, 769.CrossRefGoogle Scholar
  35. Kumar, A., & Jiang, Y. (2005). Visual short-term memory for sequential arrays. Memory & Cognition, 33(3), 488-498.CrossRefGoogle Scholar
  36. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions, Nature, 390, 279-281.CrossRefGoogle Scholar
  37. McHugo, M., Olatunji, B. O., & Zald, D. H. (2013). The emotional attentional blink: what we know so far. Frontiers in Human Neuroscience, 7, 151.CrossRefGoogle Scholar
  38. Mogg, K. & Bradley, B. P. (1999). Orienting of attention to threatening facial expressions presented under conditions of restricted awareness. Cognition & Emotion, 13(6), 713-740.CrossRefGoogle Scholar
  39. Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., et al. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121(Pt. 1), 47–57.CrossRefGoogle Scholar
  40. Öhman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: a threat advantage with schematic stimuli. Journal of Personality & Social Psychology, 80(3), 381-396.CrossRefGoogle Scholar
  41. Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strong-object” hypothesis. Perception & Psychophysics, 64(7), 1055-1067.CrossRefGoogle Scholar
  42. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefGoogle Scholar
  43. Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198-202.CrossRefGoogle Scholar
  44. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283-290.CrossRefGoogle Scholar
  45. Purcell, D. G., Stewart, A. L., & Skov, R. B. (1996). It takes a confounded face to pop out of a crowd. Perception, 25(9), 1091-1108.CrossRefGoogle Scholar
  46. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception & Performance, 18(3), 849-860.Google Scholar
  47. Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245-277.CrossRefGoogle Scholar
  48. Schaefer, A., Braver, T. S., Reynolds, J. R., Burgess, G. C., Yarkoni, T., & Gray, J. R. (2006). Individual differences in amygdala activity predict response speed during working memory. Journal of Neuroscience, 26(40), 10120-10128.CrossRefGoogle Scholar
  49. Seiffert, A. E., & Di Lollo, V. (1997). Low-level masking in the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 23, 1061-1073.Google Scholar
  50. Sessa, P., Luria, R., Gotler, A., Jolicoeur, P., & Dell’Acqua, R. (2011). Interhemispheric ERP asymmetries over inferior parietal cortex reveal differential visual working memory maintenance for fearful versus neutral facial identities. Psychophysiology, 48, 187-197.CrossRefGoogle Scholar
  51. Van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109(22), 8780-8785.CrossRefGoogle Scholar
  52. Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event related fMRI study. Neuron, 30(3), 829–841.CrossRefGoogle Scholar
  53. Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6(6), 624–631.CrossRefGoogle Scholar
  54. Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45, 174-194.CrossRefGoogle Scholar
  55. Vytal, K., & Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22(12), 2864-2885.CrossRefGoogle Scholar
  56. Wang, L., Kennedy, B. L., & Most, S. B. (2012). When emotion blinds: A spatiotemporal competition account of emotion-induced blindness. Frontiers in Psychology, 3, 438.Google Scholar
  57. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48.CrossRefGoogle Scholar
  58. Winston, J. S., Henson, R. N. A., Fine-Goulden, M. R., & Dolan, R. J. (2004). fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. Journal of Neurophysiology, 92(3), 1830-1839.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyKorea UniversitySeoulKorea

Personalised recommendations