Advertisement

Testing the primary and convergent retrieval model of recall: Recall practice produces faster recall success but also faster recall failure

  • William J. HopperEmail author
  • David E. Huber
Article
  • 6 Downloads

Abstract

The primary and convergent retrieval (PCR) model assumes that the act of successful recall not only boosts associations between the item and retrieval cues but additionally strengthens associations within the item (i.e., between the features of an item), speeding the rate of information retrieval from memory. The latter effect is termed intra-item learning and is a unique benefit of recall practice (i.e., the “testing effect”). Prior work confirmed the prediction that recall practice produces faster subsequent recall than restudy practice even if accuracy is higher following restudy. The current study replicated this result, but also examined the downside of recall practice: that after a failure to recall during practice, participants will be faster in their failure to recall on a subsequent recall test. This prediction was confirmed in a multisession cued recall experiment that collected accuracy and recall latency measurements for no practice, recall practice, or restudy, with an immediate or delayed final test. The linear ballistic accumulator model was fit to latency distributions, and model comparison determined that these effects reflect differences in drift rates, as predicted by the PCR model.

Keywords

Episodic memory Cued recall Retrieval practice Cognitive modeling 

Notes

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.  https://doi.org/10.1109/TAC.1974.1100705 Google Scholar
  2. Atkinson, R. C., & Shiffrin, R. M. (1965). Mathematical models for memory and learning (Tech. Report No. 79). Stanford, CA: Stanford University, Institute for Mathematical Studies in the Social Sciences. Retrieved from http://cogs.indiana.edu/FestschriftForRichShiffrin/pubs/1965%20Mathematical%20Models%20for%20Memory%20and%20Learning.%20Shiffrin,%20Atkinson.pdf
  3. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 2, 89–195.Google Scholar
  4. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.  https://doi.org/10.1016/j.jml.2012.11.001 Google Scholar
  5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.  https://doi.org/10.18637/jss.v067.i01 Google Scholar
  6. Brown, R., & McNeill, D. (1966). The “tip of the tongue” phenomenon. Journal of Verbal Learning and Verbal Behavior, 5(4), 325–337.  https://doi.org/10.1016/S0022-5371(66)80040-3 Google Scholar
  7. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178.  https://doi.org/10.1016/j.cogpsych.2007.12.002 Google Scholar
  8. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990.  https://doi.org/10.3758/BRM.41.4.977 Google Scholar
  9. Carpenter, S. K., & DeLosh, E. L. (2006). Impoverished cue support enhances subsequent retention: Support for the elaborative retrieval explanation of the testing effect. Memory & Cognition, 34(2), 268–276.  https://doi.org/10.3758/BF03193405 Google Scholar
  10. Carpenter, S. K., Pashler, H., Wixted, J. T., & Vul, E. (2008). The effects of tests on learning and forgetting. Memory & Cognition, 36(2), 438–448.  https://doi.org/10.3758/MC.36.2.438 Google Scholar
  11. Cox, G. E., & Shiffrin, R. M. (2017). A dynamic approach to recognition memory. Psychological Review, 124(6), 795–860.  https://doi.org/10.1037/rev0000076 Google Scholar
  12. Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2011). Output interference in recognition memory. Journal of Memory and Language, 64(4), 316–326.Google Scholar
  13. Criss, A. H., & Shiffrin, R. M. (2004). Pairs do not suffer interference from other types of pairs or single items in associative recognition. Memory & Cognition, 32(8), 1284–1297.  https://doi.org/10.3758/BF03206319 Google Scholar
  14. Diller, D. E., Nobel, P. A., & Shiffrin, R. M. (2001). An ARC–REM model for accuracy and response time in recognition and recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2), 414–435.  https://doi.org/10.1037/0278-7393.27.2.414 Google Scholar
  15. Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice response time models: A tutorial using the linear ballistic accumulator. Journal of Mathematical Psychology, 55(2), 140–151.  https://doi.org/10.1016/j.jmp.2010.10.001 Google Scholar
  16. Donkin, C., Brown, S., Heathcote, A., & Wagenmakers, E.-J. (2011). Diffusion versus linear ballistic accumulation: Different models but the same conclusions about psychological processes? Psychonomic Bulletin & Review, 18(1), 61–69.  https://doi.org/10.3758/s13423-010-0022-4 Google Scholar
  17. Donkin, C., Brown, S. D., & Heathcote, A. (2009). The overconstraint of response time models: Rethinking the scaling problem. Psychonomic Bulletin & Review, 16(6), 1129–1135.  https://doi.org/10.3758/PBR.16.6.1129 Google Scholar
  18. Dougherty, M. R., Harbison, J. I., & Davelaar, E. J. (2014). Optional stopping and the termination of memory retrieval. Current Directions in Psychological Science, 23(5), 332–337.  https://doi.org/10.1177/0963721414540170 Google Scholar
  19. Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., Cramon, D. Y. von, Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences, 105(45), 17538–17542.  https://doi.org/10.1073/pnas.0805903105 Google Scholar
  20. Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91(1), 1–67.  https://doi.org/10.1037/0033-295X.91.1.1 Google Scholar
  21. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Oxford, UK: John Wiley.Google Scholar
  22. Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers 16(2), 96–101.  https://doi.org/10.3758/BF03202365 Google Scholar
  23. Hopper, W. J., & Huber, D. E. (2018). Learning to recall: Examining recall latencies to test an intra-item learning theory of testing effects. Journal of Memory and Language, 102, 1–15.  https://doi.org/10.1016/j.jml.2018.04.005 Google Scholar
  24. Jang, Y., Wixted, J. T., Pecher, D., Zeelenberg, R., & Huber, D. E. (2012). Decomposing the interaction between retention interval and study/test practice: The role of retrievability. The Quarterly Journal of Experimental Psychology, 65(5), 962–975.  https://doi.org/10.1080/17470218.2011.638079
  25. Karpicke, J. D. (2017). Retrieval-based learning: A decade of progress. In J. T. Wixted (Ed.), Cognitive psychology of memory, Vol. 2 of Learning and memory: A comprehensive reference. New York: Elsevier.  https://doi.org/10.1016/B978-0-12-809324-5.21055-9 Google Scholar
  26. Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53(3), 983–997.Google Scholar
  27. Keresztes, A., Kaiser, D., Kovács, G., & Racsmány, M. (2014). Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas. Cerebral Cortex, 24(11), 3025–3035.  https://doi.org/10.1093/cercor/bht158 Google Scholar
  28. Kornell, N., Bjork, R. A., & Garcia, M. A. (2011). Why tests appear to prevent forgetting: A distribution-based bifurcation model. Journal of Memory and Language, 65(2), 85–97.  https://doi.org/10.1016/j.jml.2011.04.002 Google Scholar
  29. Kornell, N., Klein, P. J., & Rawson, K. A. (2015). Retrieval attempts enhance learning, but retrieval success (versus failure) does not matter. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(1), 283–294.  https://doi.org/10.1037/a0037850 Google Scholar
  30. Kuo, T.-M., & Hirshman, E. (1996). Investigations of the testing effect. The American Journal of Psychology, 109(3), 451–464.  https://doi.org/10.2307/1423016 Google Scholar
  31. Lehman, M., Smith, M. A., & Karpicke, J. D. (2014). Toward an episodic context account of retrieval-based learning: Dissociating retrieval practice and elaboration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1787–1794.  https://doi.org/10.1037/xlm0000012 Google Scholar
  32. Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502.  https://doi.org/10.3758/s13428-016-0809-y Google Scholar
  33. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  34. Malmberg, K. J. (2008a). Investigating metacognitive control in a global memory framework. In J. Dunlosky & R. A. Bjork (Eds.), Handbook of metamemory and memory. Abingdon, UK: Routledge.  https://doi.org/10.4324/9780203805503.ch14 Google Scholar
  35. Malmberg, K. J. (2008b). Toward an understanding of individual differences in episodic memory: Modeling the dynamics of recognition memory. In A. S. Benjamin & B. H. Ross (Eds.), Psychology of learning and motivation (Vol. 48, pp. 313–349). New York, NY: Academic Press.  https://doi.org/10.1016/S0079-7421(07)48008-2 Google Scholar
  36. Malmberg, K. J., & Shiffrin, R. M. (2005). The “one-shot” hypothesis for context storage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 322–336.  https://doi.org/10.1037/0278-7393.31.2.322 Google Scholar
  37. Malmberg, K. J., & Xu, J. (2006). The influence of averaging and noisy decision strategies on the recognition memory ROC. Psychonomic Bulletin & Review, 13(1), 99–105.  https://doi.org/10.3758/BF03193819 Google Scholar
  38. Malmberg, K. J., Zeelenberg, R., & Shiffrin, R. M. (2004). Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 540–549.  https://doi.org/10.1037/0278-7393.30.2.540 Google Scholar
  39. Mensink, G.-J., & Raaijmakers, J. G. W. (1988). A model for interference and forgetting. Psychological Review, 95(4), 434–455.  https://doi.org/10.1037/0033-295X.95.4.434 Google Scholar
  40. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.Google Scholar
  41. Nairne, J. S., Pandeirada, J. N. S., & Thompson, S. R. (2008). Adaptive memory: The comparative value of survival processing. Psychological Science, 19(2), 176–180.  https://doi.org/10.1111/j.1467-9280.2008.02064.x Google Scholar
  42. Nelson, T. O., & Dunlosky, J. (1991). When people’s judgments of learning (JOLs) are extremely accurate at predicting subsequent recall: The “delayed-JOL effect.” Psychological Science, 2(4), 267–271.  https://doi.org/10.1111/j.1467-9280.1991.tb00147.x Google Scholar
  43. Nobel, P. A., & Shiffrin, R. M. (2001). Retrieval processes in recognition and cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2), 384–413.  https://doi.org/10.1037/0278-7393.27.2.384 Google Scholar
  44. Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611–646.  https://doi.org/10.1037/0033-295X.110.4.611 Google Scholar
  45. Osth, A. F., Bora, B., Dennis, S., & Heathcote, A. (2017). Diffusion vs. linear ballistic accumulation: Different models, different conclusions about the slope of the zROC in recognition memory. Journal of Memory and Language, 96, 36–61.  https://doi.org/10.1016/j.jml.2017.04.003 Google Scholar
  46. Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60(4), 437–447.Google Scholar
  47. R Core Team. (2017). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  48. Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88(2), 93–134.  https://doi.org/10.1037/0033-295X.88.2.93 Google Scholar
  49. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.  https://doi.org/10.1037/0033-295X.85.2.59 Google Scholar
  50. Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356.  https://doi.org/10.1111/1467-9280.00067 Google Scholar
  51. Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333–367.  https://doi.org/10.1037/0033-295X.111.2.333 Google Scholar
  52. Ratcliff, R., & Starns, J. J. (2009). Modeling confidence and response time in recognition memory. Psychological Review, 116(1), 59–83.  https://doi.org/10.1037/a0014086 Google Scholar
  53. Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology and Aging, 19(2), 278–289.  https://doi.org/10.1037/0882-7974.19.2.278 Google Scholar
  54. Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model analysis of the effects of aging on recognition memory. Journal of Memory and Language, 50(4), 408–424.  https://doi.org/10.1016/j.jml.2003.11.002 Google Scholar
  55. Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481.Google Scholar
  56. Roediger, H. L., & Karpicke, J. D. (2006a). The power of testing memory: Basic research and implications for educational practice. Perspectives on Psychological Science, 1(3), 181–210.  https://doi.org/10.1111/j.1745-6916.2006.00012.x Google Scholar
  57. Roediger, H. L., & Karpicke, J. D. (2006b). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249–255.  https://doi.org/10.1111/j.1467-9280.2006.01693.x Google Scholar
  58. Rowland, C. A. (2014). The effect of testing versus restudy on retention: A meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432–1463.  https://doi.org/10.1037/a0037559 Google Scholar
  59. Rowland, C. A., & DeLosh, E. L. (2015). Mnemonic benefits of retrieval practice at short retention intervals. Memory, 23(3), 403–419.  https://doi.org/10.1080/09658211.2014.889710 Google Scholar
  60. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.  https://doi.org/10.1214/aos/1176344136 Google Scholar
  61. Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—Retrieving effectively from memory. Psychonomic Bulletin & Review, 4(2), 145–166.  https://doi.org/10.3758/BF03209391 Google Scholar
  62. Singmann, H., Bolker, B., Westfall, J., & Aust, F. (2018). afex: Analysis of factorial experiments [Computer software]. Retrieved from https://CRAN.R-project.org/package=afex
  63. Singmann, H., Brown, S., Gretton, M., & Heathcote, A. (2017). rtdists: Response time distributions [Computer software]. Retrieved from https://CRAN.R-project.org/package=rtdists
  64. Smith, K. A., Huber, D. E., & Vul, E. (2013). Multiply-constrained semantic search in the Remote Associates Test. Cognition, 128(1), 64–75.  https://doi.org/10.1016/j.cognition.2013.03.001 Google Scholar
  65. Starns, J. J. (2014). Using response time modeling to distinguish memory and decision processes in recognition and source tasks. Memory & Cognition, 42(8), 1357–1372.  https://doi.org/10.3758/s13421-014-0432-z Google Scholar
  66. Toppino, T. C., & Cohen, M. S. (2009). The testing effect and the retention interval: Questions and answers. Experimental Psychology, 56(4), 252–257.  https://doi.org/10.1027/1618-3169.56.4.252 Google Scholar
  67. van den Broek, G. S. E., Segers, E., Takashima, A., & Verhoeven, L. (2014). Do testing effects change over time? Insights from immediate and delayed retrieval speed. Memory, 22(7), 803–812.  https://doi.org/10.1080/09658211.2013.831455 Google Scholar
  68. van den Broek, G. S. E., Takashima, A., Segers, E., Fernández, G., & Verhoeven, L. (2013). Neural correlates of testing effects in vocabulary learning. NeuroImage, 78, 94–102.  https://doi.org/10.1016/j.neuroimage.2013.03.071 Google Scholar
  69. Vaughn, K. E., Dunlosky, J., & Rawson, K. A. (2016). Effects of successive relearning on recall: Does relearning override the effects of initial learning criterion? Memory & Cognition, 44(6), 897–909.  https://doi.org/10.3758/s13421-016-0606-y Google Scholar
  70. Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology. Experimental Psychology, 60(6), 385–402.  https://doi.org/10.1027/1618-3169/a000218 Google Scholar
  71. Wheeler, M. A., Ewers, M., & Buonanno, J. F. (2003). Different rates of forgetting following study versus test trials. Memory, 11(6), 571–580.  https://doi.org/10.1080/09658210244000414 Google Scholar
  72. Wilson, J. H., & Criss, A. H. (2017). The list strength effect in cued recall. Journal of Memory and Language, 95, 78–88.  https://doi.org/10.1016/j.jml.2017.01.006 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations