Memory & Cognition

, Volume 47, Issue 3, pp 544–560 | Cite as

Breaking the perceptual-conceptual barrier: Relational matching and working memory

  • J. David SmithEmail author
  • Brooke N. Jackson
  • Barbara A. Church


Cognitive, comparative, and developmental psychologists have long been interested in humans’ and animals’ ability to respond to abstract relations, as this ability may underlie important capacities like analogical reasoning. Cross-species research has used relational matching-to-sample (RMTS) tasks in which participants try to find stimulus pairs that “match” because they both express the same abstract relation (same or different). Researchers seek to understand the cognitive processes that underlie successful matching performance. In the present RMTS paradigm, the abstract-relational cue was made redundant with a first-order perceptual cue. Then the perceptual cue faded, requiring participants to transition from a perceptual to a conceptual approach by realizing the task’s abstract-relational affordance. We studied participants’ ability to make this transition with and without a working-memory load. The concurrent load caused participants to fail to break the perceptual-conceptual barrier unless the load was abandoned. We conclude that finding the conceptual solution depends on reconstruing the task using cognitive processes that are especially reliant on working memory. Our data provide the closest existing look at this cognitive reorganization. They raise important theoretical issues for cross-species comparisons of relational cognition, especially regarding animals’ limitations in this domain.


Same–different Relational judgments Analogies Explicit cognition Comparative cognition 


Author note

The preparation of this article was supported by Grants HD093690 and HD060563 from NICHD. We thank the research assistants in the Complex Cognition Lab at Georgia State University for help with data collection.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481. CrossRefGoogle Scholar
  2. Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category learning. Trends in Cognitive Sciences, 5, 204–210. CrossRefGoogle Scholar
  3. Brooks, D. I., & Wasserman, E. A. (2008). Same/different discrimination learning with trial-unique stimuli. Psychonomic Bulletin & Review, 15, 644–650. CrossRefGoogle Scholar
  4. Brown, R. G., & Marsden, C. D. (1988). Internal versus external cures and the control of attention in Parkinson’s disease. Brain, 111, 323–345. CrossRefGoogle Scholar
  5. Carter, D. E., & Werner, T. J. (1978). Complex learning and information processing by pigeons: A critical analysis. Journal of the Experimental Analysis of Behavior, 29, 565–601. CrossRefGoogle Scholar
  6. Castro, L., & Wasserman, E. A. (2013). Humans deploy diverse strategies in learning same-different discrimination tasks. Behavioural Processes, 93, 125–139. CrossRefGoogle Scholar
  7. Christie, S., & Gentner, D. (2014). Language helps children succeed on a classic analogy task. Cognitive Science, 38, 383–397. CrossRefGoogle Scholar
  8. Cools, A. R., van den Bercken, J. H., Horstink, M. W., van Spaendonck, K. P., & Berger, H. J. (1984). Cognitive and motor shifting aptitude disorder in Parkinson’s disease. Journal of Neurological and Neurosurgical Psychology, 47, 443–453. Retrieved from CrossRefGoogle Scholar
  9. Cumming, W. W., & Berryman, R. (1961). Some data on matching behavior in the pigeon. Journal of the Experimental Analysis of Behavior, 4, 281–284. CrossRefGoogle Scholar
  10. D’Amato, M. R., & Columbo, M. (1989). On the limits of the matching concept in monkeys (Cebus apella). Journal of the Experimental Analysis of Behavior, 52, 225–236. CrossRefGoogle Scholar
  11. D’Amato, M. R., Salmon, D. P., & Columbo, M. (1985). Extent and limits of the matching concept in monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes, 11, 35–51. Google Scholar
  12. Davis, T., Goldwater, M., & Giron, J. (2017). From concrete examples to abstract relations: The rostrolateral prefrontal cortex integrates novel examples into relational categories. Cerebral Cortex, 27, 2652–2670. Google Scholar
  13. Elliott, R., & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association with hypothesis testing and response selection. NeuroImage, 8, 17–29. CrossRefGoogle Scholar
  14. Fagot, J., & Maugard, A. (2013). Analogical reasoning in baboons (Papio papio): Flexible reencoding of the source relation depending on the target relation. Learning & Behavior, 41, 229–237. CrossRefGoogle Scholar
  15. Fagot, J., & Parron, C. (2010). Relational matching in baboons (Papio papio) with reduced grouping requirements. Journal of Experimental Psychology: Animal Behavior Processes, 36, 184–193. Google Scholar
  16. Fagot, J., & Thompson, R. K. R. (2011). Generalized relational matching by guinea baboons (Papio papio) in two-by-two-item analogy problems Psychological Science, 22, 1304–1309. CrossRefGoogle Scholar
  17. Fagot J., Wasserman E. A., & Young, M. E. (2001). Discriminating the relation between relations: The role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 27, 316–328. Google Scholar
  18. Farthing, G. W., & Opuda, M. J. (1974). Transfer of matching-to-sample in pigeons. Journal of the Experimental Analysis of Behavior, 21, 199–213. CrossRefGoogle Scholar
  19. Ferry, A. L., Hespos, S. J., & Gentner, D. (2015). Prelinguistic relational concepts: Investigating analogical processing in infants. Child Development, 86, 1386–1405. CrossRefGoogle Scholar
  20. Flemming, T. M., Thompson, R. K. R., Beran, M. J., & Washburn, D. A. (2011). Analogical reasoning and the differential outcome effect: Transitory bridging of the conceptual gap for rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 37, 353–360. Google Scholar
  21. Flemming, T. M., Thompson, R. K. R., & Fagot, J. (2013). Baboons, like humans, solve analogy by categorical abstraction of relations. Animal Cognition, 16, 519–524. CrossRefGoogle Scholar
  22. Fujita, K. (1982). An analysis of stimulus control in two-color matching-to-sample behaviors of Japanese monkeys (Macaca fuscata). Japanese Psychological Research, 24, 124–135. CrossRefGoogle Scholar
  23. Fuster, J. M. (1989). The prefrontal cortex (2nd ed.). Philadelphia, PA: Lippincott-Raven.Google Scholar
  24. Gentner, D. (2003). Why we’re so smart. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind: Advances in the study of language and thought (pp. 195–235). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  25. Gentner, D. (2016). Language as cognitive tool kit: How language supports relational thought. American Psychologist, 71(8), 650–657. CrossRefGoogle Scholar
  26. Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S., ... Cannon, T. D. (2002). Maintenance and manipulation in spatial working memory: Dissociations in the prefrontal cortex. NeuroImage, 17, 201–213.
  27. Goldman-Rakic, P. S. (1987). Circuitry of the prefrontal cortex and the regulation of behavior by representational knowledge. In F. Plum & V. Mountcastle (Eds.), Handbook of physiology (pp. 373–417). Bethesda, MD: American Physiological Society.Google Scholar
  28. Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65, 231–262. CrossRefGoogle Scholar
  29. Grafman, J., & Litvan, I. (1999). Importance of deficits in executive functions. Lancet, 354, 1921–1923. CrossRefGoogle Scholar
  30. Halford, G. S., Wilson, W. H., & Phillips, S. (2010). Relational knowledge: The foundation of higher cognition, Trends in Cognitive Sciences, 14, 497–505. CrossRefGoogle Scholar
  31. Herrnstein, R. J. (1990). Levels of stimulus control: A functional approach. Cognition, 37, 133–166. CrossRefGoogle Scholar
  32. Hochmann, J. R., Mody, S., & Carey, S. (2016). Infants’ representations of same and different in match- and non-match-to-sample tasks. Cognitive Psychology, 86, 87–111. CrossRefGoogle Scholar
  33. Hochmann, J. R., Tuerk, A. S., Sanborn, S., Zhu, R., Long, R., & Carey, S. (2017). Children’s representation of abstract relations in relational/array match-to-sample tasks. Cognitive Psychology, 99, 17–43. CrossRefGoogle Scholar
  34. Holmes, P. W. (1979). Transfer of matching performance in pigeons. Journal of the Experimental Analysis of Behavior, 31, 103–114. CrossRefGoogle Scholar
  35. Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220–264. CrossRefGoogle Scholar
  36. James, W. (1890/1950). The principles of psychology. New York, NY: Dover. (Original work published 1890)Google Scholar
  37. Katz, J. S., Wright, A. A., & Bachevalier, J. (2002). Mechanisms of same/different abstract-concept learning by rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 28, 358–368. Google Scholar
  38. Kolb, B., & Whishaw, I. Q. (1990). Fundamentals of human neuropsychology (3rd ed.). New York, NY: Freeman.Google Scholar
  39. Locke, J. (1690). An essay concerning human understanding. Philadelphia, PA: Troutman & Hayes.CrossRefGoogle Scholar
  40. Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioural Processes, 66, 309–332. CrossRefGoogle Scholar
  41. Martinho, A. I., II., & Kacelnik, A. (2016). Ducklings imprint on the relational concept of “same or different”. Science, 353 (6296), 286–288. CrossRefGoogle Scholar
  42. Maugard, A., Marzouki, Y., & Fagot, J. (2013). Contribution of working memory processes to relational matching-to-sample performance in baboons (Papio papio). Journal of Comparative Psychology, 127, 370–379. CrossRefGoogle Scholar
  43. Morrison, R. G., Holyoak, K. J., & Truong, B. (2001). Working memory modularity in analogical reasoning. Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society, 23, 663–668. Retrieved from Google Scholar
  44. Obozova, T., Smirnova, A., Zorina, Z., & Wasserman, E. (2015). Analogical reasoning in amazons. Animal Cognition, 18, 1363–1371. CrossRefGoogle Scholar
  45. Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31, 109–178. Google Scholar
  46. Pepperberg, I. M. (2013). Abstract concepts: Data from a grey parrot. Behavioural Processes, 93, 82–90. CrossRefGoogle Scholar
  47. Posner, M. I., Goldsmith, R., & Welton, K. E. (1967). Perceived distance and the classification of distorted patterns. Journal of Experimental Psychology, 73, 28–38. CrossRefGoogle Scholar
  48. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. CrossRefGoogle Scholar
  49. Premack, D. (1978). On the abstractness of human concepts: Why it would be difficult to talk to a pigeon. In S. H. Hulse, H. Fowler, & W. K. Honig (Eds.), Cognitive processes in animal behavior (pp. 423–451). Hillsdale, NJ: Erlbaum.Google Scholar
  50. Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M., ... Binder, J. R. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 27, 1987–1993.
  51. Robinson, A. L., Heaton, R. K., Lehman, R. A. W., & Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology, 48, 605–614. CrossRefGoogle Scholar
  52. Rumbaugh, D. M., & Pate, J. L. (1984). The evolution of cognition in primates: A comparative perspective. In H. L. Roitblat, T. G. Bever, & H. S. Terrace (Eds.), Animal cognition (pp. 569–585). Hillsdale, NJ: Erlbaum.Google Scholar
  53. Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33, 203–219. CrossRefGoogle Scholar
  54. Shields, W. E, Smith, J. D., & Washburn, D. A. (1997). Uncertain responses by humans and rhesus monkeys (Macaca mulatta) in a psychophysical same-different task. Journal of Experimental Psychology: General, 126, 147–164. CrossRefGoogle Scholar
  55. Smirnova, A., Zorina, Z., Obozova, T., & Wasserman, E. (2015). Crows spontaneously exhibit analogical reasoning. Current Biology, 25, 256–260. CrossRefGoogle Scholar
  56. Smith, J. D., Berg, M. E., Cook, R. G., Murphy, M. S., Crossley, M. J., Boomer, J., ... Grace, R. C. (2012). Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Reviews, 36, 2355–2369.
  57. Smith, J. D., Boomer, J., Zakrzewski, A. C., Roeder, J. L., Church, B. A., & Ashby, F. G. (2014). Deferred feedback sharply dissociates implicit and explicit category learning. Psychological Science, 25, 447–457. CrossRefGoogle Scholar
  58. Smith, J. D., & Church, B. A. (2018). Dissociable learning processes in comparative psychology. Psychonomic Bulletin & Review, 25, 1565–1584. CrossRefGoogle Scholar
  59. Smith, J. D., Flemming, T. M., Boomer, J., Beran, M. J., & Church, B. (2013). Fading perceptual resemblance: A path for rhesus macaques (Macaca mulatta) to conceptual matching? Cognition, 129, 598–614. CrossRefGoogle Scholar
  60. Smith, J. D., & Minda, J. P. (2001) Journey to the center of the category: The dissociation in amnesia between categorization and recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 984-1002. Google Scholar
  61. Smith, J. D., & Minda, J. P. (2002). Distinguishing prototype-based and exemplar-based processes in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 800–811. Google Scholar
  62. Smith, J. D., Redford, J. S., & Haas, S. M. (2008). Prototype abstraction by monkeys (Macaca mulatta). Journal of Experimental Psychology: General, 137, 390–401. CrossRefGoogle Scholar
  63. Smith, J. D. Redford, J. S., Haas, S. M., Coutinho, M. V. C., & Couchman, J. J. (2008). The comparative psychology of same-different judgments by humans (Homo sapiens) and monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 34, 361–374. Google Scholar
  64. Smith, J. D., Zakrzewski, A. C., Johnson, J. M., Valleau, J. C., Church, B. A. (2016). Categorization: The view from animal cognition. Behavioral Science, 6, 12. CrossRefGoogle Scholar
  65. Vonk, J. (2003). Gorilla (Gorilla gorilla gorilla) and Orangutan (Pongo abelii) understanding of first and second order relations. Animal Cognition, 6, 77–86. CrossRefGoogle Scholar
  66. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M., ... Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.
  67. Waltz, J. A., Lau, A., Grewal, S. K., & Holyoak, K. J. (2000). The role of working memory in analogical mapping. Memory & Cognition, 28, 1205–1212. CrossRefGoogle Scholar
  68. Washburn, D. A., & Rumbaugh, D. M. (1991). Rhesus monkey (Macaca mulatto) complex learning skills reassessed. International Journal of Primatology, 12, 377–388. CrossRefGoogle Scholar
  69. Wasserman, E. A., Fagot, J., & Young, M. (2001). Same-different conceptualization by baboons (Papio papio): The role of entropy. Journal of Comparative Psychology, 115, 42–52. CrossRefGoogle Scholar
  70. Wasserman, E. A., & Young, M. (2010). Same-different discrimination: The keel and backbone of thought and reasoning. Journal of Experimental Psychology: Animal Behavior Processes, 36, 3–22. Google Scholar
  71. Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A., & Honda, M. (2000). Toward neuroanatomical models of analogy: A positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173–197. CrossRefGoogle Scholar
  72. Wright, A. A., Cook, R. G., & Kendrick, D. (1989). Relational and absolute stimulus learning by monkeys in a memory task. Journal of the Experimental Analysis of Behavior, 52, 237–248. Retrieved from CrossRefGoogle Scholar
  73. Wright, A. A., Rivera, J., Katz, J. S., & Bachevalier, J. (2003). Abstract concept learning and list-memory processing by capuchin and rhesus monkeys. Journal of Experimental Psychology: Animal Behavior Processes, 29, 184–198. Google Scholar
  74. Wright, A. A., Santiago, H., & Sands, S. (1984). Monkey memory: Same/different concept learning, serial probe acquisition, and probe delay effects. Journal of Experimental Psychology: Animal Behavior Processes, 10, 513–529. Retrieved from Google Scholar
  75. Wright, A. A., Shyan, M. R., & Jitsumori, M. (1990). Auditory same/different concept learning by monkeys. Animal Learning and Behavior, 18, 287–294. Retrieved from CrossRefGoogle Scholar
  76. Young, M. E., Wasserman, E. A., & Garner, K. L. (1997). Effects of number of items on the pigeon’s discrimination of same from different visual displays. Journal of Experimental Psychology: Animal Behavior Processes, 23, 491–501. Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • J. David Smith
    • 1
    Email author
  • Brooke N. Jackson
    • 1
  • Barbara A. Church
    • 2
  1. 1.Department of PsychologyGeorgia State UniversityAtlantaUSA
  2. 2.Language Research CenterGeorgia State UniversityDecaturUSA

Personalised recommendations