Memory & Cognition

, Volume 47, Issue 1, pp 1–16 | Cite as

Attending to behaviorally relevant moments enhances incidental relational memory

  • Hamid B. Turker
  • Khena M. SwallowEmail author


Memory for the items one has recently encountered is sometimes enhanced in divided attention tasks: Attending to behaviorally relevant items, such as a target in a detection task, boosts memory for unrelated background items (e.g., scenes or words). However, a central feature of episodic memory is memory for the spatiotemporal relationship between items and other elements of an event (relational memory), not just the item itself. Three experiments examined whether attending to a behaviorally relevant target-item boosts memory for the relationship between that item, its features, and a background scene. Participants memorized briefly presented scenes. At the same time, they pressed a button if a second unrelated item (a figure or face) was a particular target color (Experiments 1 and 2) or target gender (Experiment 3) rather than a distractor color or gender. Target and distractor items also varied in task-irrelevant features (shape, location, or facial identity). If attending to behaviorally relevant events influences relational memory, then participants should be better able to report both target-defining and irrelevant features of items that appeared with target-paired scenes rather than distractor-paired scenes. This was the case in all experiments: memory was enhanced for the target-paired scenes as well as the association between a scene and features of the paired target-item. Attending to behaviorally relevant moments therefore has broader effects on memory encoding than previously thought. In addition to boosting memory for unrelated background items, attending to targets facilitates relational memory in these tasks.


Attentional boost effect Temporal selection Relational memory Dual-task interference Episodic memory 


Compliance with ethical standards

Disclosure of interest

The authors report no conflicts of interest.


  1. Aly, M., & Turk-Browne, N. B. (2016).Attention promotes episodic encoding by stabilizing hippocampal representations. Proceedings of the National Academy of Sciences, 113(4), E420-E429.Google Scholar
  2. Anderson, J. R., & Reder, L. M. (1999). The fan effect: New results and new theories. Journal of Experimental Psychology: General, 128(2), 186–197. Google Scholar
  3. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Reviews of Neuroscience, 28, 403-450. Google Scholar
  4. Baddeley, A., Lewis, V., Eldridge, M., & Thomson, N. (1984). Attention and retrieval from long-term memory. Journal of Experimental Psychology: General, 113(4), 518–540. Google Scholar
  5. Baddeley, A. D. (1982). Domains of recollection. Psychological Review, 89(6), 708–729. Google Scholar
  6. Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory Representations in Natural Tasks. Journal of Cognitive Neuroscience, 7(1), 66–80. Google Scholar
  7. Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2013). Real-world objects are not represented as bound units: Independent forgetting of different object details from visual memory. Journal of Experimental Psychology: General, 142(3), 791–808. Google Scholar
  8. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.Google Scholar
  9. Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641.Google Scholar
  10. Burton, A. M., Schweinberger, S. R., Jenkins, R., & Kaufmann, J. M. (2015). Arguments against a configural processing account of familiar face recognition. Perspectives on Psychological Science, 10(4), 482-496.Google Scholar
  11. Button, K. S., Ionnidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure : why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365-376.Google Scholar
  12. Castelhano, M. S., & Henderson, J. M. (2005). Incidental visual memory for objects in scenes. Visual Cognition, 12(6), 1017–1040. Google Scholar
  13. Chen, H., Swan, G., & Wyble, B. (2016). Prolonged focal attention without binding: Tracking a ball for half a minute without remembering its color. Cognition, 147, 144–148. Google Scholar
  14. Chen, H., & Wyble, B. (2015). The location but not the attributes of visual cues are automatically encoded into working memory. Vision Research, 107, 76-85.Google Scholar
  15. Chun, M. M., & Jiang, Y. (1998). Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention. Cognitive Psychology, 36(1), 28–71. Google Scholar
  16. Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current opinion in neurobiology, 17(2), 177-184.Google Scholar
  17. Cohen, M. A., Alvarez, G. A., & Nakayama, K. (2011). Natural-Scene Perception Requires Attention. Psychological Science, 22(9), 1165–1172. Google Scholar
  18. Conway, M. A. (2009). Episodic memories. Neuropsychologia, 47(11), 2305–2313. Google Scholar
  19. Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125(2), 159–180. Google Scholar
  20. Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268–294. Google Scholar
  21. Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16(6), 693–700. Google Scholar
  22. Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87(3), 272–300. Google Scholar
  23. Eichenbaum, H. (2004). Hippocampus: Cognitive Processes and Neural Representations that Underlie Declarative Memory. Neuron, 44(1), 109–120. Google Scholar
  24. Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388-396.Google Scholar
  25. Erez, J., Cusack, R., Kendall, W., & Barense, M. D. (2016). Conjunctive Coding of Complex Object Features. Cerebral Cortex, 26(5), 2271–2282. Google Scholar
  26. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. Google Scholar
  27. Fougnie, D., & Alvarez, G. A. (2011). Object features fail independently in visual working memory: Evidence for a probabilistic feature-store model. Journal of Vision, 11(12), 3, Google Scholar
  28. Gajewski, D. A., & Brockmole, J. R. (2006). Feature bindings endure without attention: Evidence from an explicit recall task. Psychonomic Bulletin & Review, 13(4), 581–587. Google Scholar
  29. Golomb, J. D., Kupitz, C. N., & Thiemann, C. T. (2014). The influence of object location on identity: A “spatial congruency bias”. Journal of Experimental Psychology: General, 143(6), 2262-2278.Google Scholar
  30. Graf, P., & Ryan, L. (1990). Transfer-appropriate processing for implicit and explicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(6), 978–992. Google Scholar
  31. Hannula, D. E., & Ranganath, C. (2008). Medial Temporal Lobe Activity Predicts Successful Relational Memory Binding. Journal of Neuroscience, 28(1), 116–124. Google Scholar
  32. Hannula, D. E., Ryan, J. D., Tranel, D., Cohen, N. J. (2007). Rapid onset relational memory effects are evident in eye movement behavior, but not in hippocampal amnesia. Journal of Cognitive Neuroscience, 19(10), 1690-1705. Google Scholar
  33. Hayhoe, M. (2000). Vision Using Routines: A Functional Account of Vision. Visual Cognition, 7(1–3), 43–64. Google Scholar
  34. Hollingworth, A. (2006). Visual memory for natural scenes: Evidence from change detection and visual search. Visual Cognition, 14(4–8), 781–807. Google Scholar
  35. Hollingworth, A. (2007). Object-position binding in visual memory for natural scenes and object arrays. Journal of Experimental Psychology: Human Perception and Performance, 33(1), 31–46.Google Scholar
  36. Huang, L. (2010). Characterizing the nature of visual conscious access: The distinction between features and location. Journal of Vision, 10(10), 24, doi: Google Scholar
  37. Hunt, R. R., & McDaniel, M. A. (1993). The Enigma of Organization and Distinctiveness. Journal of Memory and Language, 32(4), 421–445. Google Scholar
  38. Intraub, H., & Nicklos, S. (1985). Levels of processing and picture memory: The physical superiority effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(2), 284–298. Google Scholar
  39. Jacoby, L. L., Woloshyn, V., & Kelley, C. (1989). Becoming famous without being recognized: Unconscious influences of memory produced by dividing attention. Journal of Experimental Psychology: General, 118(2), 115–125. Google Scholar
  40. Jiang, Y., & Leung, A. W. (2005). Implicit learning of ignored visual context. Psychonomic Bulletin & Review, 12(1), 100–106. Google Scholar
  41. Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683-702.Google Scholar
  42. Jiang, Y. V., & Swallow, K. M. (2014). Temporal yoking in continuous multitasking. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2348–2360. Google Scholar
  43. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological bulletin, 114(1), 3-28.Google Scholar
  44. Kelley, C. M., & Jacoby, L. L. (2000). Recollection and familiarity. In E. Tulving (Ed.), The Oxford Handbook of Memory (pp. 215–228). Oxford University Press.Google Scholar
  45. Kim, S.-Y., & Giovanello, K. S. (2011). The effects of attention on age-related relational memory deficits: Evidence from a novel attentional manipulation. Psychology and Aging, 26(3), 678–688. Google Scholar
  46. Knoblauch, K. (2014). psyphy: Functions for analyzing psychophysical data in R (Version 0.1-9). Retrieved from
  47. Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology: General, 139(3), 558–578. Google Scholar
  48. Leclercq, V., Le Dantec, C. C., & Seitz, A. R. (2014). Encoding of episodic information through fast task-irrelevant perceptual learning. Vision Research, 99(Supplement C), 5–11. Google Scholar
  49. Lee, A. C., Yeung, L. K., & Barense, M. D. (2012). The hippocampus and visual perception. Frontiers in human neuroscience, 6, 91. Google Scholar
  50. Levin, D. T., & Saylor, M. M. (2008). Shining spotlights, zooming lenses, grabbing hands, and pecking chickens: the ebb and flow of attention during events. In T. F. Shipley & J. M. Zacks, Understanding Events: From Perception to Action (pp. 522–554). Oxford University Press.Google Scholar
  51. Lin, J. Y., Pype, A. D., Murray, S. O., & Boynton, G. M. (2010). Enhanced Memory for Scenes Presented at Behaviorally Relevant Points in Time. PLOS Biology, 8(3), e1000337. Google Scholar
  52. Litman, L., & Davachi, L. (2008). Distributed learning enhances relational memory consolidation. Learning & Memory, 15(9), 711–716. Google Scholar
  53. MacLeod, C. M., Gopie, N., Hourihan, K. L., Neary, K. R., & Ozubko, J. D. (2010). The production effect: Delineation of a phenomenon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 671-685. Google Scholar
  54. Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide. Psychology press.Google Scholar
  55. Makovski, T., Jiang, Y. V., & Swallow, K. M. (2013). How do observer’s responses affect visual long-term memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1097–1105. Google Scholar
  56. Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87(3), 252–271. Google Scholar
  57. Marshall, L., & Bays, P. M. (2013). Obligatory encoding of task-irrelevant features depletes working memory resources. Journal of vision, 13(2), 21-21. Google Scholar
  58. Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36(4), 630–633. Google Scholar
  59. Mulligan, N. W. (1998). The role of attention during encoding in implicit and explicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 27–47. Google Scholar
  60. Mulligan, N. W. (2011). Generation disrupts memory for intrinsic context but not extrinsic context. The Quarterly Journal of Experimental Psychology, 64(8), 1543-1562. Google Scholar
  61. Mulligan, N. W., Smith, S. A., & Spataro, P. (2016). The attentional boost effect and context memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(4), 598–607. Google Scholar
  62. Mulligan, N. W., Spataro, P., & Picklesimer, M. (2014). The attentional boost effect with verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 1049-1069. Google Scholar
  63. Nairne, J. S. (2002). The myth of the encoding-retrieval match. Memory, 10(5–6), 389–395. Google Scholar
  64. Nakabayashi, K., Burton, A. M., Brandimonte, M. A., & Lloyd-Jones, T. J. (2012). Dissociating positive and negative influences of verbal processing on the recognition of pictures of faces and objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(2), 376-390. Google Scholar
  65. Newtson, D., & Engquist, G. (1976). The perceptual organization of ongoing behavior. Journal of Experimental Social Psychology, 12(5), 436-450.Google Scholar
  66. Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 19(1), 34-48.Google Scholar
  67. O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584-587. Google Scholar
  68. Oliva, A. (2005). Gist of the scene. In: L. Itti, G. Rees, & J.K. Tsotsos (Eds.), Neurobiology of attention (pp. 251–256). San Diego: ElsevierGoogle Scholar
  69. Onyper, S. V., Zhang, Y., & Howard, M. W. (2010). Some-or-none recollection: Evidence from item and source memory. Journal of Experimental Psychology. General, 139(2), 341–364. Google Scholar
  70. Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? Cognitive Psychology, 5(2), 176–206. Google Scholar
  71. Pascucci, D., & Turatto, M. (2013). Immediate Effect of Internal Reward on Visual Adaptation. Psychological Science, 24(7), 1317–1322. Google Scholar
  72. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437–442. Google Scholar
  73. Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological review, 116(1), 129-156.Google Scholar
  74. Potter, M. C., Staub, A., & O’Connor, D. H. (2004). Pictorial and Conceptual Representation of Glimpsed Pictures. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 478–489. Google Scholar
  75. Rajaram, S., Srinivas, K., & Roediger III, H. L. (1998). A transfer-appropriate processing account of context effects in word-fragment completion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(4), 993–1004. Google Scholar
  76. Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42(1), 2–13. Google Scholar
  77. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860. Google Scholar
  78. Reder, L. M., Donavos, D. K., & Erickson, M. A. (2002). Perceptual match effects in direct tests of memory: The role of contextual fan. Memory & Cognition, 30(2), 312–323. Google Scholar
  79. Robin, J., Buchsbaum, B. R., & Moscovitch, M. (2018). The primacy of spatial context in the neural representation of events. Journal of Neuroscience, 1638-17.
  80. Rubin, D. C., & Umanath, S. (2015). Event memory: A theory of memory for laboratory, autobiographical, and fictional events. Psychological Review, 122(1), 1-23.Google Scholar
  81. Rubin, R. D., Schwarb, H., Lucas, H. D., Dulas, M. R., Cohen, N. J. (2017). Dynamic hippocampal and prefrontal contributions to memory processes and representations blur the boundaries of traditional cognitive domains. Brain sciences, 7(7), 82-98. Google Scholar
  82. Ryan, J. D., Althoff, R. R., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a Deficit in Relational Memory. Psychological Science, 11(6), 454–461. Google Scholar
  83. Sara, S.J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211–223.Google Scholar
  84. Schoenfeld, M. A., Hopf, J. M., Merkel, C., Heinze, H. J., & Hillyard, S. A. (2014). Object-based attention involves the sequential activation of feature-specific cortical modules. Nature neuroscience, 17(4), 619-624. Google Scholar
  85. Schwan, S., Garsoffky, & Hesse, F. W. (2000). Do film cuts facilitate the perceptual and cognitive organization of activity sequences? Memory and Cognition, 28(2), 214-223.Google Scholar
  86. Seitz, A. R., & Watanabe, T. (2009). The phenomenon of task-irrelevant perceptual learning. Vision Research, 49(21), 2604–2610. Google Scholar
  87. Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-Specific Delay Activity in Human Primary Visual Cortex. Psychological Science, 20(2), 207–214. Google Scholar
  88. Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review, 8(2), 203–220. Google Scholar
  89. Spataro, P., Mulligan, N. W., Bechi Gabrielli, G., & Rossi-Arnaud, C. (2017). Divided attention enhances explicit but not implicit conceptual memory: an item-specific account of the attentional boost effect. Memory, 25(2), 170-175.Google Scholar
  90. Spataro, P., Mulligan, N. W., & Rossi-Arnaud, C. (2013). Divided attention can enhance memory encoding: The attentional boost effect in implicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1123-1231.Google Scholar
  91. Swallow, K. M., & Atir, S. (2018). The role of value in the attentional boost effect. Quarterly Journal of Experimental Psychology,
  92. Swallow, K. M., & Jiang, Y. V. (2010). The Attentional Boost Effect: Transient Increases in Attention to One Task Enhance Performance in a Second Task. Cognition, 115(1), 118–132. Google Scholar
  93. Swallow, K. M., & Jiang, Y. V. (2011). The role of timing in the attentional boost effect. Attention, Perception, & Psychophysics, 73(2), 389–404. Google Scholar
  94. Swallow, K. M., & Jiang, Y. V. (2012). Goal-relevant events need not be rare to boost memory for concurrent images. Attention, Perception, & Psychophysics, 74(1), 70-82.Google Scholar
  95. Swallow, K. M., & Jiang, Y. V. (2013). Attentional Load and Attentional Boost: A Review of Data and Theory. Frontiers in Psychology, 4.
  96. Swallow, K. M., & Jiang, Y. V. (2014a). Perceptual load and attentional boost: A study of their interaction. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1034–1045. Google Scholar
  97. Swallow, K. M., & Jiang, Y. V. (2014b). The attentional boost effect really is a boost: Evidence from a new baseline. Attention, Perception, & Psychophysics, 1–10.
  98. Swallow, K. M., Makovski, T., & Jiang, Y. V. (2012). Selection of events in time enhances activity throughout early visual cortex. Journal of Neurophysiology, 108(12), 3239–3252. Google Scholar
  99. Swallow, K. M., Zacks, J. M., & Abrams, R. A. (2009). Event boundaries in perception affect memory encoding and updating. Journal of Experimental Psychology: General, 138(2), 236–257. Google Scholar
  100. Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278.Google Scholar
  101. Troyer, A. K., & Craik, F. I. M. (2000). The effect of divided attention on memory for items and their context. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 54(3), 161–171. Google Scholar
  102. Troyer, A. K., Winocur, G., Craik, F. I. M., & Moscovitch, M. (1999). Source memory and divided attention: Reciprocal costs to primary and secondary tasks. Neuropsychology, 13(4), 467–474. Google Scholar
  103. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381-402). New York: Academic Press.Google Scholar
  104. Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26(1), 1–12. Google Scholar
  105. Wang, J. X., Cohen, N. J., & Voss, J. L. (2015). Covert rapid action-memory simulation (CRAMS): A hypothesis of hippocampal-prefrontal interactions for adaptive behavior. Neurobiology of learning and memory, 117, 22-33. Google Scholar
  106. Weldon, M. S., Roediger, H. L., Beitel, D. A., & Johnston, T. R. (1995). Perceptual and Conceptual Processes in Implicit and Explicit Tests with Picture Fragment and Word Fragment Cues. Journal of Memory and Language, 34(2), 268–285. Google Scholar
  107. Wheeler, M. A., Stuss, D. T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121(3), 331–354. Google Scholar
  108. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64. Google Scholar
  109. Wolfe, J. M., Horowitz, T. S., & Michod, K. O. (2007). Is visual attention required for robust picture memory? Vision Research, 47(7), 955–964. Google Scholar
  110. Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychonomic Bulletin & Review, 15(1), 223–229. Google Scholar
  111. Xu, Y. (2010). The Neural Fate of Task-Irrelevant Features in Object-Based Processing. Journal of Neuroscience, 30(42), 14020–14028. Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyCornell UniversityIthacaUSA

Personalised recommendations