Advertisement

Memory & Cognition

, Volume 46, Issue 8, pp 1234–1247 | Cite as

Category-length and category-strength effects using images of scenes

  • Oliver Baumann
  • Joyce M. G. Vromen
  • Adam C. Boddy
  • Eloise Crawshaw
  • Michael S. Humphreys
Article

Abstract

Global matching models have provided an important theoretical framework for recognition memory. Key predictions of this class of models are that (1) increasing the number of occurrences in a study list of some items affects the performance on other items (list-strength effect) and that (2) adding new items results in a deterioration of performance on the other items (list-length effect). Experimental confirmation of these predictions has been difficult, and the results have been inconsistent. A review of the existing literature, however, suggests that robust length and strength effects do occur when sufficiently similar hard-to-label items are used. In an effort to investigate this further, we had participants study lists containing one or more members of visual scene categories (bathrooms, beaches, etc.). Experiments 1 and 2 replicated and extended previous findings showing that the study of additional category members decreased accuracy, providing confirmation of the category-length effect. Experiment 3 showed that repeating some category members decreased the accuracy of nonrepeated members, providing evidence for a category-strength effect. Experiment 4 eliminated a potential challenge to these results. Taken together, these findings provide robust support for global matching models of recognition memory. The overall list lengths, the category sizes, and the number of repetitions used demonstrated that scene categories are well-suited to testing the fundamental assumptions of global matching models. These include (A) interference from memories for similar items and contexts, (B) nondestructive interference, and (C) that conjunctive information is made available through a matching operation.

Keywords

Category length Category strength List length List strength Global matching Item noise Recognition memory 

References

  1. Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, 88, 413–451.  https://doi.org/10.1037/0033-295X.84.5.413 CrossRefGoogle Scholar
  2. Arndt, J., & Hirshman, E. (1998). True and false recognition in MINERVA2: Explanations from a global matching perspective. Journal of Memory and Language, 39, 371–391.CrossRefGoogle Scholar
  3. Buratto, L. G., & Lamberts, K. (2008). List strength effect without list-length effect in recognition memory. Quarterly Journal of Experimental Psychology, 61, 218–226.CrossRefGoogle Scholar
  4. Cary, M., & Reder, L. M. (2003) A dual-process account of the list-length and strength-based mirror effects in recognition. Journal of Memory and Language, 49, 231–248.CrossRefGoogle Scholar
  5. Cho, K. W., & Neely, J. H. (2013). Null category-length and target-lure relatedness effects in episodic recognition: A constraint on item-noise interference models. Quarterly Journal of Experimental Psychology, 66, 1331–1355.  https://doi.org/10.1080/17470218.2012.739185 CrossRefGoogle Scholar
  6. Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: How the models match the data. Psychonomic Bulletin & Review, 3, 37–60.  https://doi.org/10.3758/BF03210740 CrossRefGoogle Scholar
  7. Criss, A. H., & Shiffrin, R. M. (2004). Pairs do not suffer interference from other types of pairs or single items in associative recognition. Memory & Cognition, 32, 1284–1297.  https://doi.org/10.3758/BF03206319 CrossRefGoogle Scholar
  8. Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word recognition. Psychological Review, 108, 452–478.  https://doi.org/10.1037/0033-295X.108.2.452 CrossRefPubMedGoogle Scholar
  9. Dennis, S., Lee, M. D., & Kinnell, A. (2008). Bayesian analysis of recognition memory: The case of the list-length effect. Journal of Memory and Language, 59, 361–376.  https://doi.org/10.1016/j.jml.2008.06.007 CrossRefGoogle Scholar
  10. Dorfman, D. D., & Alf, E., Jr. (1969). Maximum-likelihood estimation of parameters of signal-detection theory and determination of confidence intervals—Rating-method data. Journal of Mathematical Psychology, 6, 487–496.  https://doi.org/10.1016/0022-2496(69)90019-4 CrossRefGoogle Scholar
  11. Dorfman, D. D., Beavers, L. L., & Saslow, C. (1973). Estimation of signal detection theory parameters from rating-method data: A comparison of the method of scoring and direct search. Bulletin of the Psychonomic Society, 1, 207–208.CrossRefGoogle Scholar
  12. Dyne, A. M., Humphreys, M. S., Bain, J. D., & Pike, R. (1990). Associative interference effects in recognition and recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 813–824.  https://doi.org/10.1037/0278-7393.16.5.813 CrossRefGoogle Scholar
  13. Eich, J. M. (1982). A composite holographic associative recall model. Psychological Review, 89, 627–661.  https://doi.org/10.1037/0033-295X.89.6.627 CrossRefGoogle Scholar
  14. Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91, 1–67.  https://doi.org/10.1037/0033-295X.91.1.1 CrossRefPubMedGoogle Scholar
  15. Green, D. M., & Swets, J. A. (1974). Signal detection theory and psychophysics (Rev. ed.). Huntington, NY: Krieger.Google Scholar
  16. Grider, R. C., & Malmberg, K. J. (2008). Discriminating between changes in bias and changes in accuracy for recognition memory of emotional stimuli. Memory & Cognition, 36, 933–946.  https://doi.org/10.3758/MC.36.5.933 CrossRefGoogle Scholar
  17. Hatutus, M. J., & Lee, A. J. (1998). The dispersions of estimates of sensitivity obtained from four psychophysical procedures: Implications for experimental design. Perception & Psychophysics, 60, 638–649.  https://doi.org/10.3758/BF03206051 CrossRefGoogle Scholar
  18. Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d'. Behavior Research Methods, Instruments, & Computers, 27, 46–51.  https://doi.org/10.3758/BF03203619 CrossRefGoogle Scholar
  19. Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16, 96–101.  https://doi.org/10.3758/BF03202365 CrossRefGoogle Scholar
  20. Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95, 528–551.  https://doi.org/10.1037/0033-295X.95.4.528 CrossRefGoogle Scholar
  21. Humphreys, M. S. (1978). Item and relational information: A case for context independent retrieval. Journal of Verbal Learning and Verbal Behavior, 17, 175–188.CrossRefGoogle Scholar
  22. Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different ways to cue a coherent memory system: A theory for episodic, semantic and procedural tasks. Psychological Review, 96, 208–233.  https://doi.org/10.1037/0033-295X.96.2.208 CrossRefGoogle Scholar
  23. Humphreys, M. S., & Chalmers, K. A. (2016) Thinking about human memory. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  24. Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513–541.  https://doi.org/10.1016/0749-596X(91)90025-F CrossRefGoogle Scholar
  25. Jang, Y., & Huber, D. E. (2008). Context retrieval and context change in free recall: Recalling from long-term memory drives list isolation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 112–127.  https://doi.org/10.1037/0278-7393.34.1.112 CrossRefPubMedGoogle Scholar
  26. Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. Journal of Experimental Psychology: Human Perception and Performance, 8, 521–535.  https://doi.org/10.1037/0096-1523.8.4.521 CrossRefPubMedGoogle Scholar
  27. Kinnell, A., & Dennis, S. (2011). The list length effect in recognition memory: An analysis of potential confounds. Memory & Cognition, 39, 348–363.  https://doi.org/10.3758/s13421-010-0007-6 CrossRefGoogle Scholar
  28. Kinnell, A., & Dennis, S. (2012). The role of stimulus type in list length effects in recognition memory. Memory & Cognition, 40, 311–325.  https://doi.org/10.3758/s13421-011-0164-2 CrossRefGoogle Scholar
  29. Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010a). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology: General, 139, 558–578.  https://doi.org/10.1037/a0019165 CrossRefGoogle Scholar
  30. Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010b). Scene memory is more detailed than you think: The role of categories in visual long-term memory. Psychological Science, 21, 1551–1556.  https://doi.org/10.1177/0956797610385359 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  32. Maguire, A. M., Humphreys, M. S., Dennis, S., & Lee, M. D. (2010). Global similarity accounts of embedded-category designs: Tests of the Global Matching Models. Journal of Memory and Language, 63, 131–148.  https://doi.org/10.1016/j.jml.2010.03.007 CrossRefGoogle Scholar
  33. Malmi, R. A. (1977). Context effects in recognition memory: The frequency attribute. Memory & Cognition, 5, 123–130.CrossRefGoogle Scholar
  34. Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252–271.  https://doi.org/10.1037/0033-295X.87.3.252 CrossRefGoogle Scholar
  35. Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.Google Scholar
  36. Mather, M. Henkel, L. A., & Johnson, M. K. (1997). Evaluation characteristics of false memories: Remember/know judgments and memory characteristics questionnaire compared. Memory & Cognition, 25, 826–837.CrossRefGoogle Scholar
  37. McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105, 724–760.Google Scholar
  38. Murdock, B. B., Jr. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89, 609–626.  https://doi.org/10.1037/0033-295X.89.6.609 CrossRefGoogle Scholar
  39. Neely, J. H., & Tse, C. (2009). Category length produces an inverted-U discriminability function in episodic recognition memory. Quarterly Journal of Experimental Psychology, 62, 1141–1172.CrossRefGoogle Scholar
  40. Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms [Database]. Retrieved from http://w3.usf.edu/FreeAssociation/
  41. Norman, K. A. (2002). Differential effects of list strength on recollection and familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 1083–1094.  https://doi.org/10.1037/0278-7393.28.6.1083 CrossRefPubMedGoogle Scholar
  42. Norman, K. A., Tepe, K., Nyhus, E., & Curran, T. (2008). Event-related potential correlates of interference effects on recognition memory. Psychonomic Bulletin & Review, 15, 36–43.  https://doi.org/10.3758/PBR.15.1.36 CrossRefGoogle Scholar
  43. Ost, A. F., & Dennis, S. (2015). Sources of interference in item and associative recognition memory. Psychological Review, 122, 260–311.CrossRefGoogle Scholar
  44. Osth, A. F., Dennis, S., & Kinnell, A. (2014). Stimulus type and the list strength paradigm. Quarterly Journal of Experimental Psychology, 67, 1826–1841.CrossRefGoogle Scholar
  45. Pike, R. (1984). Comparison of convolution and matrix distributed memory systems for associative recall and recognition. Psychological Review, 91, 281–294.Google Scholar
  46. Potvin, P. J., & Schutz, R. W. (2000). Statistical power for the two-factor repeated measures ANOVA. Behavior Research Methods, Instruments, & Computers, 32, 347–356.CrossRefGoogle Scholar
  47. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2002). Numerical recipes in C++: The art of scientific computing. New York, NY: Cambridge University Press.Google Scholar
  48. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes in C++: The art of scientific computing (3rd ed.). New York, NY: Cambridge University Press.Google Scholar
  49. Ratcliff, R., Clark, S. E., & Shiffrin, R. M. (1990). The list-strength effect: I. Data and discussion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 163–178.  https://doi.org/10.1037/0278-7393.16.2.163 CrossRefPubMedGoogle Scholar
  50. Shiffrin, R. M., Huber, D. E., & Marinelli, K. (1995). Effects of category length and strength on familiarity in recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 267–287.PubMedGoogle Scholar
  51. Shiffrin, R. M., Ratcliff, R., & Clark, S. E. (1990). List-strength effect: II. Theoretical mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 179–195.  https://doi.org/10.1037/0278-7393.16.2.179 CrossRefPubMedGoogle Scholar
  52. Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—retrieving effectively from memory. Psychonomic Bulletin & Review, 4, 145–166.  https://doi.org/10.3758/BF03209391 CrossRefGoogle Scholar
  53. Underwood, B. J. (1978). Recognition memory as a function of length of study list. Bulletin of the Psychonomic Society, 12, 89–91.CrossRefGoogle Scholar
  54. Wixted, J. T. (2005). A theory about why we forget what we once knew. Current Directions in Psychological Science, 14, 6–9.CrossRefGoogle Scholar
  55. Wixted, J. T., & Mickes, L. (2010). A continuous dual-process model of remember/know judgments. Psychological Review, 117, 1025–1054.  https://doi.org/10.1037/a0020874 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Oliver Baumann
    • 1
    • 2
  • Joyce M. G. Vromen
    • 1
  • Adam C. Boddy
    • 1
  • Eloise Crawshaw
    • 1
  • Michael S. Humphreys
    • 3
  1. 1.Queensland Brain InstituteUniversity of QueenslandSt LuciaAustralia
  2. 2.School of Psychology and Interdisciplinary Centre for the Artificial Mind (iCAM)Bond UniversityRobinaAustralia
  3. 3.School of PsychologyUniversity of QueenslandSt LuciaAustralia

Personalised recommendations