Advertisement

Learning & Behavior

, Volume 47, Issue 4, pp 280–283 | Cite as

Questioning the developmental effects of group size on cognitive abilities

  • Connor T. Lambert
  • Kendra B. Sewall
  • Lauren M. GuilletteEmail author
Commentary

Abstract

Australian magpies living in larger social groups learned quicker and made fewer errors across four cognitive tasks compared with birds living in smaller social groups, and this pattern may be driven by a developmental effect associated with the cognitive demands of living in larger groups. While Smulders (2018, Learning and Behavior, 1–2, doi:10.3758/s13420-018-0335-0) questioned whether this group size–cognitive performance pattern was driven by motivation rather than cognitive abilities, we question whether there is truly evidence of a developmental effect and whether the relationship between group size and cognitive performance can be explained in other ways. We highlight potential alternative explanations for the relationship between group size and cognitive performance and highlight some of the theoretical issues underlying the developmental effects of group size on cognitive abilities.

Keywords

Cognitive ecology Comparative cognition Social learning 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Council of Canada (NSERC), the Department of Psychology at the University of Alberta, and a Start-up Grant from the Faculty of Science at the University of Alberta.

References

  1. Aplin, L. M. (2018). Culture and cultural evolution in birds: a review of the evidence. Animal Behaviour, 147, 179–187. doi: https://doi.org/10.1016/j.anbehav.2018.05.001 CrossRefGoogle Scholar
  2. Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018a). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554, 364–367. doi: https://doi.org/10.1038/nature25503 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ashton, B. J., Ridley, A. R., & Thornton, A. (2018b). Smarter through group living: A response to Smulders. Learning & Behavior, 1–3. doi: https://doi.org/10.3758/s13420-018-0366-6
  4. Ashton, B. J., Thornton, A., & Ridley, A. R. (2018c). An intraspecific appraisal of the social intelligence hypothesis. Philosophical Transactions of the Royal Society B, 373. doi: https://doi.org/10.1098/rstb.2017.0288 CrossRefGoogle Scholar
  5. Beecher, M. D., & Brenowitz, E. A. (2005). Functional aspects of song learning in songbirds. Trends in Ecology and Evolution, 20, 143–149. doi: https://doi.org/10.1016/j.tree.2005.01.004 CrossRefPubMedGoogle Scholar
  6. Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. New York, NY: Wiley. doi: https://doi.org/10.1002/0471725153.ch2 CrossRefGoogle Scholar
  7. Bolhuis, J. J. (1991). Mechanisms of Avian imprinting: A review. Biological Reviews of the Cambridge Philosophical Society, 66, 303–345.CrossRefGoogle Scholar
  8. Buchanan, K. L., Grindstaff, J. L., & Pravosudov, V. V. (2013). Condition dependence, developmental plasticity, and cognition: Implications for ecology and evolution. Trends in Ecology and Evolution, 28, 290–296. doi: https://doi.org/10.1016/j.tree.2013.02.004 CrossRefPubMedGoogle Scholar
  9. Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19, 15–18. doi: https://doi.org/10.1080/00401706.1977.10489493 CrossRefGoogle Scholar
  10. Croney, C. C., & Newberry, R. C. (2007). Group size and cognitive processes. Applied Animal Behaviour Science, 103, 215–228. doi: https://doi.org/10.1016/j.applanim.2006.05.023 CrossRefGoogle Scholar
  11. Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R., & Pravosudov, V. V. (2015). Heritability and the evolution of cognitive traits. Behavioral Ecology, 26, 1447–1459. doi: https://doi.org/10.1093/beheco/arv088 CrossRefGoogle Scholar
  12. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews, 5, 69. doi: https://doi.org/10.1093/acprof CrossRefGoogle Scholar
  13. Fleming, A. S., Kraemer, G. W., Gonzalez, A., Lovic, V., Rees, S., & Melo, A. (2002). Mothering begets mothering: The transmission of behavior and its neurobiology across generations. Pharmacology Biochemistry and Behavior, 73, 61–75. doi: https://doi.org/10.1016/S0091-3057(02)00793-1 CrossRefGoogle Scholar
  14. Gerlach, G., Hodgins-Davis, A., Avolio, C., & Schunter, C. (2008). Kin recognition in zebrafish: A 24-hour window for olfactory imprinting. Proceedings of the Royal Society B: Biological Sciences, 275, 2165–2170. doi: https://doi.org/10.1098/rspb.2008.0647 CrossRefGoogle Scholar
  15. Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559. doi: https://doi.org/10.2307/1130197 CrossRefPubMedGoogle Scholar
  16. Griffin, A. S., Guillette, L. M., & Healy, S. D. (2015). Cognition and personality: An analysis of an emerging field. Trends in Ecology and Evolution, 30, 207–214. doi: https://doi.org/10.1016/j.tree.2015.01.012 CrossRefPubMedGoogle Scholar
  17. Humphrey, N. K. (1976). The social function of intellect. In P. Bateson & R. Hinde (Eds.), Growing points in ethology (pp. 303–317). Cambridge, England: Cambridge University Press.Google Scholar
  18. Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501–506. doi: https://doi.org/10.1126/science.153.3735.501 CrossRefPubMedGoogle Scholar
  19. Kosten, T. A., Kim, J. J., & Lee, H. J. (2012). Early life manipulations alter learning and memory in rats. Neuroscience and Biobehavioral Reviews, 36, 1985–2006. doi: https://doi.org/10.1016/j.neubiorev.2012.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mercado, E., III. (2011). Mapping individual variations in learning capacity. International Journal of Comparative Psychology, 24, 4–35. doi: https://doi.org/10.1016/j.jebdp.2005.01.011 CrossRefGoogle Scholar
  21. Morand-Ferron, J., Cole, E. F., & Quinn, J. L. (2016). Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. Biological Reviews, 91, 367–389. doi: https://doi.org/10.1111/brv.12174 CrossRefPubMedGoogle Scholar
  22. Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98–108. doi: https://doi.org/10.1038/mp.2014.105 CrossRefPubMedGoogle Scholar
  23. Roth, T. C., & Krochmal, A. R. (2015). The role of age-specific learning and experience for turtles navigating a changing landscape. Current Biology, 25, 333–337. doi: https://doi.org/10.1016/j.cub.2014.11.048 CrossRefPubMedGoogle Scholar
  24. Rowe, C., & Healy, S. D. (2014). Measuring variation in cognition. Behavioral Ecology, 25, 1287–1292. doi: https://doi.org/10.1093/beheco/aru090 CrossRefGoogle Scholar
  25. Sauce, B., Bendrath, S., Herzfeld, M., Siegel, D., Style, C., Rab, S., . . . Matzel, L. D. (2018). The impact of environmental interventions among mouse siblings on the heritability and malleability of general cognitive ability. Philosophical Transactions of the Royal Society B, 373. doi: https://doi.org/10.1098/rstb.2017.0289 CrossRefGoogle Scholar
  26. Sewall, K. B. (2015). Social complexity as a driver of communication and cognition. Integrative and Comparative Biology, 55, 384–395. doi: https://doi.org/10.1093/icb/icv064 CrossRefPubMedGoogle Scholar
  27. Smulders, T. V. (2018). Smarter through group living? Learning and Behavior, 1–2. doi: https://doi.org/10.3758/s13420-018-0335-0
  28. Whiten, A. (2019). Cultural evolution in animals. Annual Review of Ecology, Evolution, and Systematics, 50, 1–22. doi: https://doi.org/10.1146/annurev-ecolsys-110218-025040 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of AlbertaEdmontonCanada
  2. 2.Department of Biological Sciences and School of NeuroscienceVirginia TechBlacksburgUSA
  3. 3.School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations