Advertisement

The role of category density in pigeons’ tracking of relevant information

  • Cassandra L. Sheridan
  • Leyre CastroEmail author
  • Sol Fonseca
  • Edward A. Wasserman
Article

Abstract

Prior categorization studies have shown that pigeons reliably track features that are relevant to category discrimination. In these studies, category exemplars contained two relevant and two irrelevant features; therefore, category density (specifically, the relevant to irrelevant information ratio) was relatively high. Here, we manipulated category density both between and within subjects by keeping constant the amount of relevant information (one feature) and varying the amount of irrelevant information (one or three features). One group of pigeons started with low-density training, then proceeded to high-density training, and finally returned to low-density training (Low-High-Low); a second group of pigeons started with high-density training and then proceeded to low-density training (High-Low). The statistical density of the category exemplars had a large effect on pigeons’ performance. Training with high-density exemplars greatly benefitted category learning. Accuracy rose faster and to a higher level with high-density training than with low-density training; the percentage of relevant pecks showed a very similar pattern. In addition, high-density training (in the Low-High-Low group) led to an increase in performance on the more difficult low-density task, an observation reminiscent of the easy-to-hard effect. These results illuminate factors affecting pigeons’ accuracy and tracking of relevant information in visual categorization.

Keywords

Categorization Category structure Statistical density Selective attention Easy-to-hard effect Pigeons 

Notes

References

  1. Allan, R. W. (1993). Control of pecking response topography by stimulus-reinforcer and response-reinforcer contingencies. In H. P. Zeigler, & H.-J. Bischof (Eds.), Vision, brain, and behavior in birds (pp. 285-300). Cambridge, MA: MIT Press.Google Scholar
  2. Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., & Green, P. (2018). lme4: Linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-17. Retrieved from https://CRAN.R-project.org/package=lme4
  3. Bermejo, R., & Zeigler, H. P. (1998). Conditioned "prehension" in the pigeon: Kinematics, coordination and stimulus control of the pecking response. Behavioural Brain Research, 91, 173-184.  https://doi.org/10.1016/s0166-4328(97)00121-6 CrossRefGoogle Scholar
  4. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.CrossRefGoogle Scholar
  5. Castro, L., & Wasserman, E. A. (2014). Pigeons’ tracking of relevant attributes in categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 195-211. doi: https://doi.org/10.1037/xan0000022 Google Scholar
  6. Castro, L., & Wasserman, E. A. (2016). Attentional shifts in categorization learning: Perseveration but not learned irrelevance. Behavioural Processes, 123, 63-73. doi: https://doi.org/10.1016/j.beproc.2015.11.001 CrossRefGoogle Scholar
  7. Castro, L., & Wasserman, E. A. (2017). Feature predictiveness and selective attention in pigeons’ categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 43, 231-242. doi: https://doi.org/10.1037/xan0000146 Google Scholar
  8. Dittrich, L., Rose, J., Buschmann, J. F., Bourdonnais, M., & Güntürkün, O. (2009). Peck tracking: A method for localizing critical features within complex pictures for pigeons. Animal Cognition, 13, 133-143. doi: https://doi.org/10.1007/s10071-009-0252-x CrossRefGoogle Scholar
  9. Garner, W. R. (1962). Uncertainty and structure as psychological concepts. New York: Wiley.Google Scholar
  10. George, D. N., & Pearce, J. M. (1999). Acquired distinctiveness is controlled by stimulus relevance not correlation with reward. Journal of Experimental Psychology: Animal Behavior Processes, 25, 363-373. doi:  https://doi.org/10.1037//0097-7403.25.3.363 Google Scholar
  11. George, D. N., & Pearce, J. M. (2012). A configural theory of attention and associative learning. Learning & Behavior, 40, 241-254. doi: https://doi.org/10.3758/s13420-012-0078-2 CrossRefGoogle Scholar
  12. Gibson, B. M., Wasserman, E. A., Frei, L., & Miller, K. (2004). Recent advances in operant conditioning technology: A versatile and affordable computerized touch screen system. Behavior Research Methods, Instruments Google Scholar
  13. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  14. James, W. (1890/1950). The principles of psychology. New York: Dover Publications.Google Scholar
  15. Jenkins H. M., & Sainsbury R. S. (1970). Discrimination learning with the distinctive feature on positive or negative trials. In D. I. Mostofsky (Ed.), Attention: Contemporary theory and analysis. (pp. 239-273). New York: Appleton-Century-Crofts.Google Scholar
  16. Kloos, H., & Sloutsky, V. M. (2008). What’s behind different kinds of kinds: Effects of statistical density on learning and representation of categories. Journal of Experimental Psychology: General, 137, 52-72. doi.org/10.1037/0096-3445.137.1.52 CrossRefGoogle Scholar
  17. Kruschke, J. K. (1992). ALCOVE: As exemplar-based connectionist model of category learning. Journal of Experimental Psychology, 99, 22-44. doi: https://doi.org/10.1037/0033-295x.99.1.22 Google Scholar
  18. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2018). lmerTest: Tests in Linear Mixed Effects Models. R package version 3.0-1. Retrieved from https://CRAN.R-project.org/package=lmerTest
  19. Lawrence, D. H. (1949). Acquired distinctiveness of cues: I. Transfer between discriminations on the basis of familiarity with the stimulus. Journal of Experimental Psychology, 39, 770-784. doi: https://doi.org/10.1037/h0058097 CrossRefGoogle Scholar
  20. Lawrence, D. H. (1952). The transfer of a discrimination along a continuum. Journal of Comparative and Physiological Psychology, 45, 511-516. doi: https://doi.org/10.1037/h0057135 CrossRefGoogle Scholar
  21. Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N., & Wills, A. J. (2016). Attention and associative learning in humans: An integrative review. Psychological Bulletin, 142, 1111-1140.  https://doi.org/10.1037/bul0000064 CrossRefGoogle Scholar
  22. Mackintosh, N. J. (1965). Selective attention in animal discrimination learning. Psychological Bulletin, 64, 124-150. doi: https://doi.org/10.1037/h0022347 CrossRefGoogle Scholar
  23. Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276-298. doi: https://doi.org/10.1037/h0076778 CrossRefGoogle Scholar
  24. Mackintosh, N. J., & Little, L. (1969). Intradimensional and extradimensional shift learning by pigeons. Psychonomic Science, 14, 5-6. doi: https://doi.org/10.3758/bf03336395 CrossRefGoogle Scholar
  25. Pavlov, I. P. (1927). Conditioned reflexes (translated by G.V. Anrep). Oxford, UK: Oxford University Press.Google Scholar
  26. Pearce, J. M., Esber, G. R., George, D. N., & Haselgrove, M. (2008). The nature of discrimination learning in pigeons. Learning & Behavior, 36, 188-199. doi: https://doi.org/10.3758/lb.36.3.188 CrossRefGoogle Scholar
  27. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. doi: https://doi.org/10.1163/156856897x00366 CrossRefGoogle Scholar
  28. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org
  29. Rehder, B., & Hoffman, A. B. (2005). Eyetracking and selective attention in category learning. Cognitive Psychology, 51, 1-41. doi: https://doi.org/10.1016/j.cogpsych.2004.11.001 CrossRefGoogle Scholar
  30. Reynolds, G. S. (1961). Attention in the pigeon. Journal of the Experimental Analysis of Behavior, 4, 203–208. doi: https://doi.org/10.1901/jeab.1961.4-203 CrossRefGoogle Scholar
  31. Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs, 75, 1–42. doi: https://doi.org/10.1037/h0093825 CrossRefGoogle Scholar
  32. Smirnova, A., Zorina, Z., Obozova, T., & Wasserman, E. (2015). Crows spontaneously exhibit analogical reasoning. Current Biology, 25, 256-260. doi: https://doi.org/10.1016/j.cub.2014.11.063 CrossRefGoogle Scholar
  33. Smith, J. E. K. (1982). Simple algorithms for M-alternative forced choice calculations. Perception & Psychophysics, 31, 95-96. doi: https://doi.org/10.3758/bf03206208 CrossRefGoogle Scholar
  34. Trabasso, T. R., & Bower, G. H. (1968). Attention in learning: Theory and research. New York: Wiley.Google Scholar
  35. Walker, M. M., Lee, Y., & Bitterman, M. E. (1990). Transfer along a continuum in the discriminative learning of honeybees (Apis mellifera). Journal of Comparative Psychology, 104, 66–70. doi: https://doi.org/10.1037/0735-7036.104.1.66 CrossRefGoogle Scholar
  36. Wasserman, E. A. (1974). Stimulus-reinforcer predictiveness and selective discrimination learning in pigeons. Journal of Experimental Psychology, 103, 284-297. doi: https://doi.org/10.1037/h0036872 CrossRefGoogle Scholar
  37. Wills, A. J., Lea, S. E. G., Leaver, L. A., Osthaus, B., Ryan, C. M. E., Suret, M. B., Bryant, C. M. L., Chapman, S. J. A., & Millar, L. (2009). A comparative analysis of the categorization of multidimensional stimuli: I. Unidimensional classification does not necessarily imply analytic processing; evidence from pigeons (Columba livia), squirrels (Sciurus carolinensis), and humans (Homo sapiens). Journal of Comparative Psychology, 123, 391–405. doi: https://doi.org/10.1037/a0016216 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Cassandra L. Sheridan
    • 1
  • Leyre Castro
    • 1
    Email author
  • Sol Fonseca
    • 1
    • 2
  • Edward A. Wasserman
    • 1
  1. 1.Department of Psychological and Brain SciencesThe University of IowaIowa CityUSA
  2. 2.University of Puerto RicoSan JuanPuerto Rico

Personalised recommendations