Advertisement

Learning & Behavior

, Volume 47, Issue 4, pp 277–279 | Cite as

Smarter through group living: A response to Smulders

  • Benjamin J. AshtonEmail author
  • Amanda R. Ridley
  • Alex Thornton
Article

Abstract

We recently identified a strong, positive relationship between group size and individual cognitive performance, and a strong, positive relationship between female cognitive performance and reproductive success (Ashton, Ridley, Edwards, & Thornton in Nature, 554, 364–367, 2018). An opinion piece by Smulders (Learning & Behavior,  https://doi.org/10.3758/s13420-018-0335-0, 2018) raised the interesting notion that these patterns may be underlined by motivational factors. In this commentary, we highlight why none of the available data are consistent with this explanation, but instead support the argument that the demands of group living influence cognitive development, with knock-on consequences for fitness.

Keywords

Social intelligence hypothesis Cognitive ecology Australian magpie 

Notes

References

  1. Ashton, B. J., Thornton, A., & Ridley, A. R. (2018). An intraspecific appraisal of the social intelligence hypothesis. Philosophical Transactions of the Royal Society B, 373. doi: https://doi.org/10.1098/rstb.2017.0288 CrossRefGoogle Scholar
  2. Ashton, B. J., Thornton, A., & Ridley, A. R. (2018). An intraspecific appraisal of the social intelligence hypothesis. Philosophical Transactions of the Royal Society B, 373. Retrieved from  https://doi.org/10.1098/rstb.2017.0288 CrossRefGoogle Scholar
  3. Blundell, G. M. (2002). Sociality in river otters: Cooperative foraging or reproductive strategies? Behavioral Ecology, 13(1), 134–141. doi: https://doi.org/10.1093/beheco/13.1.134 CrossRefGoogle Scholar
  4. Boogert, N. J., Madden, J. R., Morand-Ferron, J., & Thornton, A. (2018). Measuring and understanding individual differences in cognition. Philosophical Transactions of the Royal Society B, 373. doi: https://doi.org/10.1098/rstb.2017.0280 CrossRefGoogle Scholar
  5. Courchamp, F., Rasmussen, G. S. a, & Macdonald, D. W. (2002). Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaon pictus. Behavioral Ecology, 13(1), 20–27.CrossRefGoogle Scholar
  6. Edwards, E. K., Mitchell, N. J., & Ridley, A. R. (2015). The impact of high temperatures on foraging behaviour and body condition in the Western Australian magpie Cracticus tibicen dorsalis. Ostrich, 86(1/2), 137–144. doi: https://doi.org/10.2989/00306525.2015.1034219 CrossRefGoogle Scholar
  7. Johnstone, R. E., & Storr, G. M. (2004). Handbook of western Australian birds Volume II—Passerines. Perth: Western Australian Museum.Google Scholar
  8. Langley, E. J. G., Horik, J. O. Van, Whiteside, M. A., & Madden, J. R. (2018). Individuals in larger groups are more successful on spatial discrimination tasks. Animal Behaviour, 142, 87–93. doi: https://doi.org/10.1016/j.anbehav.2018.05.020 CrossRefGoogle Scholar
  9. Maille, A., & Schradin, C. (2016). Survival is linked with reaction time and spatial memory in African striped mice. Biology Letters, 12(8), 277–286. doi: https://doi.org/10.1098/rsbl.2016.0346 CrossRefGoogle Scholar
  10. Morand-Ferron, J., Cole, E. F., & Quinn, J. L. (2015). Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. Biological Reviews, 91, 367–389. doi: https://doi.org/10.1111/brv.12174 CrossRefPubMedGoogle Scholar
  11. Rowe, C., & Healy, S. D. (2014). Measuring variation in cognition. Behavioral Ecology, 25, 1287–1292. doi: https://doi.org/10.1093/beheco/aru090 CrossRefGoogle Scholar
  12. Shaw, R. C., Boogert, N. J., Clayton, N. S., & Burns, K. C. (2015). Wild psychometrics: Evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Animal Behaviour, 109(February), 101–111. doi: https://doi.org/10.1016/j.anbehav.2015.08.001 CrossRefGoogle Scholar
  13. Smulders, T. V. (2018). Smarter through group living ? Learning & Behavior, 1–2. doi: https://doi.org/10.3758/s13420-018-0335-0
  14. Sorato, E., Gullett, P. R., Griffith, S. C., & Russell, A. F. (2012). Effects of predation risk on foraging behaviour and group size: Adaptations in a social cooperative species. Animal Behaviour, 84(4), 823–834. doi: https://doi.org/10.1016/j.anbehav.2012.07.003 CrossRefGoogle Scholar
  15. Thornton, A., Isden, J., & Madden, J. R. (2014). Toward wild psychometrics: Linking individual cognitive differences to fitness. Behavioral Ecology, 25(6), 1299–1301. doi: https://doi.org/10.1093/beheco/aru095 CrossRefGoogle Scholar
  16. Thornton, A., & Lukas, D. (2012). Individual variation in cognitive performance: developmental and evolutionary perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1603), 2773–83. doi: https://doi.org/10.1098/rstb.2012.0214 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Whiten, A. (2018). Brainpower boost for birds in large groups. Nature doi: https://doi.org/10.1038/d41586-018-01487-3 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyAustralia
  2. 2.Centre for Ecology and ConservationUniversity of ExeterPenrynUK

Personalised recommendations