Advertisement

Age-related differences in neural activation and functional connectivity during the processing of vocal prosody in adolescence

  • Michele MorningstarEmail author
  • Whitney I. Mattson
  • Joseph Venticinque
  • Stanley SingerJr
  • Bhavani Selvaraj
  • Houchun H. Hu
  • Eric E. Nelson
Article

Abstract

The ability to recognize others’ emotions based on vocal emotional prosody follows a protracted developmental trajectory during adolescence. However, little is known about the neural mechanisms supporting this maturation. The current study investigated age-related differences in neural activation during a vocal emotion recognition (ER) task. Listeners aged 8 to 19 years old completed the vocal ER task while undergoing functional magnetic resonance imaging. The task of categorizing vocal emotional prosody elicited activation primarily in temporal and frontal areas. Age was associated with a) greater activation in regions in the superior, middle, and inferior frontal gyri, b) greater functional connectivity between the left precentral and inferior frontal gyri and regions in the bilateral insula and temporo-parietal junction, and c) greater fractional anisotropy in the superior longitudinal fasciculus, which connects frontal areas to posterior temporo-parietal regions. Many of these age-related differences in brain activation and connectivity were associated with better performance on the ER task. Increased activation in, and connectivity between, areas typically involved in language processing and social cognition may facilitate the development of vocal ER skills in adolescence.

Keywords

Adolescence Emotional prosody Vocal Emotion recognition Functional connectivity Neural activation 

Notes

Funding

This work was supported by internal funds at Nationwide Children’s Hospital and the Fonds de recherche du Québec – Nature et technologies [grant number 207776].

Compliance with ethical standards

Competing interests

The authors have no competing interests to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. Adolphs, R., Damasio, H., & Tranel, D. (2002). Neural systems for recognition of emotional prosody: A 3-d lesion study. Emotion, 2(1), 23–51. doi: https://doi.org/10.1037/1528-3542.2.1.23 Google Scholar
  2. Alba-Ferrara, L., Hausmann, M., Mitchell, R. L., & Weis, S. (2011). The neural correlates of emotional prosody comprehension: Disentangling simple from complex emotion. PLoS One, 6(12), e28701. doi: https://doi.org/10.1371/journal.pone.0028701 Google Scholar
  3. Allgood, R., & Heaton, P. (2015). Developmental change and cross-domain links in vocal and musical emotion recognition performance in childhood. British Journal of Developmental Psychology, 33(3), 398–403. doi: https://doi.org/10.1111/bjdp.12097 Google Scholar
  4. Bach, D. R., Grandjean, D., Sander, D., Herdener, M., Strik, W. K., & Seifritz, E. (2008). The effect of appraisal level on processing of emotional prosody in meaningless speech. Neuroimage, 42(2), 919–927.  https://doi.org/10.1016/j.neuroimage.2008.05.034 Google Scholar
  5. Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3), 614.Google Scholar
  6. Belin, P., Zatorre, R. J., & Ahad, P. (2002). Human temporal-lobe response to vocal sounds. Cognitive Brain Research, 13, 17–26.Google Scholar
  7. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403, 309–312.Google Scholar
  8. Belyk, M., & Brown, S. (2013). Perception of affective and linguistic prosody: An ALE meta-analysis of neuroimaging studies. Soc Cogn Affect Neurosci, 9(9), 1395–1403.Google Scholar
  9. Bestelmeyer, P. E. G., Maurage, P., Rouger, J., Latinus, M., & Belin, P. (2014). Adaptation to vocal expressions reveals multistep perception of auditory emotion. Journal of Neuroscience, 34(24), 8098–8105.Google Scholar
  10. Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267–277.  https://doi.org/10.1038/nrn2353 Google Scholar
  11. Blakemore, S. J. (2012). Imaging brain development: The adolescent brain. Neuroimage, 61(2), 397–406.  https://doi.org/10.1016/j.neuroimage.2011.11.080 Google Scholar
  12. Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3-4), 296–312.  https://doi.org/10.1111/j.1469-7610.2006.01611.x Google Scholar
  13. Blakemore, S. J., & Mills, K. L. (2014). Is adolescence a sensitive period for sociocultural processing? Annu Rev Psychol, 65, 187–207.  https://doi.org/10.1146/annurev-psych-010213-115202 Google Scholar
  14. Bonte, M., Frost, M. A., Rutten, S., Ley, A., Formisano, E., & Goebel, R. (2013). Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex. Neuroimage, 83, 739–750.  https://doi.org/10.1016/j.neuroimage.2013.07.017 Google Scholar
  15. Bonte, M., Ley, A., Scharke, W., & Formisano, E. (2016). Developmental refinement of cortical systems for speech and voice processing. Neuroimage, 128, 373–384.  https://doi.org/10.1016/j.neuroimage.2016.01.015 Google Scholar
  16. Brosgole, L., & Weisman, J. (1995). Mood recognition across the ages. International Journal of Neuroscience, 82(3–4), 169–189.Google Scholar
  17. Brown, T. T., Petersen, S. E., & Schlaggar, B. L. (2006). Does human functional brain organization shift from diffuse to focal with development? Dev Sci, 9(1), 9–11.  https://doi.org/10.1111/j.1467-7687.2005.00455.x Google Scholar
  18. Buchanan, T. W., Lutz, K., Mirzazade, S., Specht, K., Shah, N. J., Zilles, K., & Jancke, L. (2000). Recognition of emotional prosody and verbal components of spoken language: An fMRI study. Cognitive Brain Research, 9, 227–238.Google Scholar
  19. Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., . . . Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cereb Cortex, 24(11), 2981–2990.  https://doi.org/10.1093/cercor/bht154
  20. Burnett, S., Sebastian, C., Cohen Kadosh, K., & Blakemore, S. J. (2011). The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies. Neuroscience & Biobehavioral Reviews, 35(8), 1654–1664.  https://doi.org/10.1016/j.neubiorev.2010.10.011 Google Scholar
  21. Carton, J. S., Kessler, E. A., & Pape, C. L. (1999). Nonverbal decoding skills and relationship well-being in adults. Journal of Nonverbal Behavior, 23(1), 91–100.Google Scholar
  22. Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends Cogn Sci, 9(3), 104–110.Google Scholar
  23. Chen, G., Adleman, N. E., Saad, Z. S., Leibenluft, E., & Cox, R. W. (2014). Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model. Neuroimage, 99, 571–588.Google Scholar
  24. Chronaki, G., Hadwin, J. A., Garner, M., Maurage, P., & Sonuga-Barke, E. J. S. (2015). The development of emotion recognition from facial expressions and non-linguistic vocalizations during childhood. British Journal of Developmental Psychology, 33(2), 218–236.Google Scholar
  25. Chronaki, G., Wigelsworth, M., Pell, M. D., & Kotz, S. A. (2018). The development of cross-cultural recognition of vocal emotion during childhood and adolescence. Scientific Reports, 8(1), 8659.  https://doi.org/10.1038/s41598-018-26889-1 Google Scholar
  26. Cohen Kadosh, K., Cohen Kadosh, R., Dick, F., & Johnson, M. H. (2010). Developmental changes in effective connectivity in the emerging core face network. Cereb Cortex, 21(6), 1389–1394.Google Scholar
  27. Cohen Kadosh, K., Johnson, M. H., Dick, F., Cohen Kadosh, R., & Blakemore, S. J. (2012). Effects of age, task performance, and structural brain development on face processing. Cereb Cortex, 23(7), 1630–1642.Google Scholar
  28. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical research, 29(3), 162–173.Google Scholar
  29. Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, P. A. (2017). fMRI clustering and false-positive rates. Proceedings of the National academy of Sciences of the United States of America, 114(17), E3370–E3371.  https://doi.org/10.1073/pnas.1614961114
  30. Cox, R. W., Reynolds, R. C., & Taylor, P. A. (2016). AFNI and clustering: False positive rates redux. Brain Connectivity, 7(3), 152–171.Google Scholar
  31. Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636–650.Google Scholar
  32. Doherty, C. P., Fitzsimons, M., Asenbauer, B., & Staunton, H. (1999). Discrimination of prosody and music by normal children. Eur J Neurol, 6(2), 221–226.Google Scholar
  33. Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Dev Sci, 9(1), 1–8.  https://doi.org/10.1111/j.1467-7687.2005.00454.x Google Scholar
  34. Eickhoff, S. B., Heim, S., Zilles, K., & Amunts, K. (2006). Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage, 32(2), 570–582.Google Scholar
  35. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25(4), 1325–1335.Google Scholar
  36. Ethofer, T., Anders, S., Erb, M., Herbert, C., Wiethoff, S., Kissler, J., . . . Wildgruber, D. (2006a). Cerebral pathways in processing of affective prosody: A dynamic causal modeling study. Neuroimage, 30(2), 580–587.  https://doi.org/10.1016/j.neuroimage.2005.09.059
  37. Ethofer, T., Anders, S., Wiethoff, S., Erb, M., Herbert, C., Saur, R., . . . Wildgruber, D. (2006b). Effects of prosodic emotional intensity on activation of associative auditory cortex. NeuroReport, 17(3), 249–253.Google Scholar
  38. Ethofer, T., Kreifelts, B., Wiethoff, S., Wolf, J., Grodd, W., Vuilleumier, P., & Wildgruber, D. (2009a). Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci, 21(7), 1255–1268.  https://doi.org/10.1162/jocn.2009.21099 Google Scholar
  39. Ethofer, T., Van De Ville, D., Scherer, K., & Vuilleumier, P. (2009b). Decoding of emotional information in voice-sensitive cortices. Current Biology, 19(12), 1028–1033.  https://doi.org/10.1016/j.cub.2009.04.054 Google Scholar
  40. Ethofer, T., Bretscher, J., Gschwind, M., Kreifelts, B., Wildgruber, D., & Vuilleumier, P. (2012). Emotional voice areas: Anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cereb Cortex, 22(1), 191–200.  https://doi.org/10.1093/cercor/bhr113
  41. Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., . . . Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), 1–14.Google Scholar
  42. Frank, M. G., & Stennett, J. (2001). The forced-choice paradigm and the perception of facial expressions of emotion. Journal of Personality and Social Psychology, 80(1), 75.Google Scholar
  43. Fruhholz, S., Ceravolo, L., & Grandjean, D. (2012). Specific brain networks during explicit and implicit decoding of emotional prosody. Cereb Cortex, 22(5), 1107–1117.  https://doi.org/10.1093/cercor/bhr184 Google Scholar
  44. Frühholz, S., & Grandjean, D. (2013). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience & Biobehavioral Reviews, 37(10), 2847–2855.Google Scholar
  45. Furman, W., & Buhrmester, D. (1992). Age and sex differences in perceptions of networks of personal relationships. Child development, 63(1), 103–115.Google Scholar
  46. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., . . . Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National academy of Sciences of the United States of America, 101(21), 8174–8179.Google Scholar
  47. Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nat Neurosci, 8(2), 145–146.  https://doi.org/10.1038/nn1392 Google Scholar
  48. Grecucci, A., Giorgetta, C., Bonini, N., & Sanfey, A. (2013). Reappraising social emotions: The role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation. Frontiers in human neuroscience, 7, 523.Google Scholar
  49. Grosbras, M.-H., Ross, P. D., & Belin, P. (2018). Categorical emotion recognition from voice improves during childhood and adolescence. Scientific Reports, 8(1), 14791.Google Scholar
  50. Güroğlu, B., van den Bos, W., & Crone, E. A. (2014). Sharing and giving across adolescence: An experimental study examining the development of prosocial behavior. Front Psychol, 5, 1–13.Google Scholar
  51. Halberstadt, A. G., Denham, S. A., & Dunsmore, J. C. (2001). Affective social competence. Social development, 10(1), 79–119.Google Scholar
  52. Hamann, S. (2012). Mapping discrete and dimensional emotions onto the brain: Controversies and consensus. Trends Cogn Sci, 16(9), 458–466.Google Scholar
  53. Heim, S., Opitz, B., Müller, K., & Friederici, A. D. (2003). Phonological processing during language production: fMRI evidence for a shared production-comprehension network. Cognitive Brain Research, 16(2), 285–296.Google Scholar
  54. Herba, C., & Phillips, M. (2004). Annotation: Development of facial expression recognition from childhood to adolescence: Behavioural and neurological perspectives. Journal of Child Psychology & Psychiatry, 45(7), 1185–1198.  https://doi.org/10.1111/j.1469-7610.2004.00316.x Google Scholar
  55. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.Google Scholar
  56. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical image analysis, 5(2), 143–156.Google Scholar
  57. Johnson, M. H., Grossmann, T., & Cohen Kadosh, K. (2009). Mapping functional brain development: Building a social brain through interactive specialization. Developmental Psychology, 45(1), 151.Google Scholar
  58. Johnstone, T., & Scherer, K. R. (2000). Vocal communication of emotion. In M. Lewis & J. Haviland (Eds.), Handbook of emotions (pp. 220–235). New York: Guilford.Google Scholar
  59. Johnstone, T., van Reekum, C. M., Oakes, T. R., & Davidson, R. J. (2006). The voice of emotion: An fMRI study of neural responses to angry and happy vocal expressions. Soc Cogn Affect Neurosci, 1(3), 242–249.  https://doi.org/10.1093/scan/nsl027
  60. Kessler, D., Angstadt, M., & Sripada, C. S. (2017). Reevaluating “cluster failure” in fMRI using nonparametric control of the false discovery rate. Proceedings of the National Academy of Sciences, 114(17), E3372.  https://doi.org/10.1073/pnas.1614502114
  61. Kilford, E. J., Garrett, E., & Blakemore, S. J. (2016). The development of social cognition in adolescence: An integrated perspective. Neuroscience & Biobehavioral Reviews, 70, 106–120.  https://doi.org/10.1016/j.neubiorev.2016.08.016 Google Scholar
  62. Klapwijk, E. T., Goddings, A. L., Burnett Heyes, S., Bird, G., Viner, R. M., & Blakemore, S. J. (2013). Increased functional connectivity with puberty in the mentalising network involved in social emotion processing. Horm Behav, 64(2), 314–322.  https://doi.org/10.1016/j.yhbeh.2013.03.012 Google Scholar
  63. Kolb, B., Wilson, B., & Taylor, L. (1992). Developmental changes in the recognition and comprehension of facial expression: Implications for frontal lobe function. Brain and Cognition, 20, 74–84.Google Scholar
  64. Kotz, S. A., Kalberlah, C., Bahlmann, J., Friederici, A. D., & Haynes, J. D. (2013). Predicting vocal emotion expressions from the human brain. Hum Brain Mapp, 34(8), 1971–1981.  https://doi.org/10.1002/hbm.22041 Google Scholar
  65. Larson, R. W., Richards, M. H., Moneta, G., Holmbeck, G., & Duckett, E. (1996). Changes in adolescents' daily interactions with their families from ages 10 to 18: Disengagement and transformation. Developmental Psychology, 32(4), 744.Google Scholar
  66. Lee, E., Kang, J. I., Park, I. H., Kim, J. J., & An, S. K. (2008). Is a neutral face really evaluated as being emotionally neutral? Psychiatry research, 157(1), 77–85.Google Scholar
  67. Li, F., Yin, S., Feng, P., Hu, N., Ding, C., & Chen, A. (2018). The cognitive up- and down-regulation of positive emotion: Evidence from behavior, electrophysiology, and neuroimaging. Biol Psychol, 136, 57–66.  https://doi.org/10.1016/j.biopsycho.2018.05.013 Google Scholar
  68. Liebenthal, E., Silbersweig, D. A., & Stern, E. (2016). The language, tone and prosody of emotions: Neural substrates and dynamics of spoken-word emotion perception. Front Neurosci, 10, 506.  https://doi.org/10.3389/fnins.2016.00506 Google Scholar
  69. Lindquist, K. A., & Feldman Barrett, L. (2012). A functional architecture of the human brain: Emerging insights from the science of emotion. Trends Cogn Sci, 16(11), 533–540.Google Scholar
  70. Mahy, C. E. V., Moses, L. J., & Pfeifer, J. H. (2014). How and where: Theory-of-mind in the brain. Dev Cogn Neurosci, 9, 68–81.Google Scholar
  71. Matsumoto, D., & Kishimoto, H. (1983). Developmental characteristics in judgments of emotion from nonverbal vocal cues. International Journal of Intercultural Relations, 7(4), 415-424.Google Scholar
  72. McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage, 61(4), 1277–1286.Google Scholar
  73. Mitchell, R. L. C., Elliott, R., Barry, M., Cruttenden, A., & Woodruff, P. W. R. (2003). The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia, 41(10), 1410–1421.  https://doi.org/10.1016/s0028-3932(03)00017-4 Google Scholar
  74. Mitchell, R. L. C., & Ross, E. D. (2013). Attitudinal prosody: What we know and directions for future study. Neuroscience & Biobehavioral Reviews, 37(3), 471–479.Google Scholar
  75. Mohammad, S. A., & Nashaat, N. H. (2017). Age-related changes of white matter association tracts in normal children throughout adulthood: A diffusion tensor tractography study. Neuroradiology, 59, 715–724.Google Scholar
  76. Morningstar, M., Dirks, M. A., & Huang, S. (2017). Vocal cues underlying youth and adult portrayals of socio-emotional expressions. Journal of Nonverbal Behavior, 41(2), 155–183.  https://doi.org/10.1007/s10919-017-0250-7 Google Scholar
  77. Morningstar, M., Dirks, M. A., Rappaport, B. I., Pine, D. S., & Nelson, E. E. (2019). Associations between anxious and depressive symptoms and the recognition of vocal socioemotional expressions in youth. Journal of Clinical Child & Adolescent Psychology, 48(3), 491–500.  https://doi.org/10.1080/15374416.2017.1350963 Google Scholar
  78. Morningstar, M., Ly, V. Y., Feldman, L., & Dirks, M. A. (2018a). Mid-adolescents’ and adults’ recognition of vocal cues of emotion and social intent: Differences by expression and speaker age. Journal of Nonverbal Behavior, 42(2), 237–251.Google Scholar
  79. Morningstar, M., Nelson, E. E., & Dirks, M. A. (2018b). Maturation of vocal emotion recognition: Insights from the developmental and neuroimaging literature. Neuroscience & Biobehavioral Reviews, 90, 221–2340.  https://doi.org/10.1016/j.neubiorev.2018.04.019
  80. Nelson, E. E. (2017). Learning through the ages: How the brain adapts to the social world across development. Cognitive Development, 42, 84–94.Google Scholar
  81. Nelson, E. E., Jarcho, J. M., & Guyer, A. E. (2016). Social re-orientation and brain development: An expanded and updated view. Dev Cogn Neurosci, 17, 118–127.  https://doi.org/10.1016/j.dcn.2015.12.008 Google Scholar
  82. Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35, 163–174.Google Scholar
  83. Nowicki, S., & Duke, M. P. (1992). The association of children's nonverbal decoding abilities with their popularity, locus of control, and academic achievement. The Journal of genetic psychology, 153(4), 385–393.Google Scholar
  84. Nowicki, S., & Duke, M. P. (1994). Individual differences in the nonverbal communication of affect: The diagnostic analysis of nonverbal accuracy scale. Journal of Nonverbal Behavior, 18(1), 9–35.Google Scholar
  85. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.Google Scholar
  86. Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., . . . Evans, A. C. (2011). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 1908–1911.Google Scholar
  87. Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception i: The neural basis of normal emotion perception. Biological Psychiatry, 54(5), 504–514.  https://doi.org/10.1016/s0006-3223(03)00168-9 Google Scholar
  88. Pollak, S. D., Cicchetti, D., Hornung, K., & Reed, A. (2000). Recognizing emotion in faces: Developmental effects of child abuse and neglect. Developmental Psychology, 36(5), 679.Google Scholar
  89. Prochnow, D., Höing, B., Kleiser, R., Lindenberg, R., Wittsack, H. J., Schäfer, R., . . . Seitz, R. J. (2013). The neural correlates of affect reading: An fMRI study on faces and gestures. Behavioural brain research, 237, 270–277.Google Scholar
  90. Redcay, E. (2008). The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neuroscience & Biobehavioral Reviews, 32(1), 123–142.  https://doi.org/10.1016/j.neubiorev.2007.06.004 Google Scholar
  91. Sauter, D. A., Panattoni, C., & Happé, F. (2013). Children's recognition of emotions from vocal cues. British Journal of Developmental Psychology, 31(1), 97–113.  https://doi.org/10.1111/j.2044-835X.2012.02081.x Google Scholar
  92. Saxe, R., & Wexler, A. (2005). Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia, 43(10), 1391–1399.Google Scholar
  93. Schirmer, A. (2017). ? An ALE meta-analysis comparing vocal and facial emotion processing. Soc Cogn Affect Neurosci, 13(1), 1–13.Google Scholar
  94. Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends Cogn Sci, 10(1), 24–30.  https://doi.org/10.1016/j.tics.2005.11.009 Google Scholar
  95. Schirmer, A., Kotz, S. A., & Friederici, A. D. (2002). Sex differentiates the role of emotional prosody during word processing. Cognitive Brain Research, 14, 228–233.Google Scholar
  96. Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2002). Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: A cross-sectional diffusion-tensor MR imaging study. Radiology, 222(1), 212–218.Google Scholar
  97. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., . . . Flitney, D. E. (2004). Advances in functional and structural MR image analysis and implementation as ASL. Neuroimage, 23, S208–S219.Google Scholar
  98. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., . . . Matthews, P. M. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505.Google Scholar
  99. Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of experimental psychology: General, 117(1), 34.Google Scholar
  100. Taki, Y., Thyreau, B., Hashizume, H., Sassa, Y., Takeuchi, H., Wu, K., . . . Asano, K. (2013). Linear and curvilinear correlations of brain white matter volume, fractional anisotropy, and mean diffusivity with age using voxel-based and region-of-interest analyses in 246 healthy children. Hum Brain Mapp, 34(8), 1842–1856.Google Scholar
  101. Tonks, J., Williams, W. H., Frampton, I., Yates, P., & Slater, A. (2007). Assessing emotion recognition in 9–15-years olds: Preliminary analysis of abilities in reading emotion from faces, voices and eyes. Brain injury, 21(6), 623–629.Google Scholar
  102. Tottenham, N. (2014). The importance of early experiences for neuro-affective development. Current Topics in Behavioral Neurosciences, 16, 109–129.  https://doi.org/10.1007/7854_2013_254 Google Scholar
  103. Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., . . . Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30(4), 1414–1432.Google Scholar
  104. Wiethoff, S., Wildgruber, D., Kreifelts, B., Becker, H., Herbert, C., Grodd, W., & Ethofer, T. (2008). Cerebral processing of emotional prosody--influence of acoustic parameters and arousal. Neuroimage, 39(2), 885–893.  https://doi.org/10.1016/j.neuroimage.2007.09.028 Google Scholar
  105. Wildgruber, D., Ackermann, H., Kreifelts, B., & Ethofer, T. (2006). Cerebral processing of linguistic and emotional prosody: fMRI studies. Progress in Brain Research, 156, 249–268.  https://doi.org/10.1016/s0079-6123(06)56013-3
  106. Wilson-Mendenhall, C. D., Barrett, L. F., & Barsalou, L. W. (2013). Situating emotional experience. Frontiers in human neuroscience, 7, 764.Google Scholar
  107. Yovel, G., & Belin, P. (2013). A unified coding strategy for processing faces and voices. Trends Cogn Sci, 17(6), 263–271.  https://doi.org/10.1016/j.tics.2013.04.004 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Center for Biobehavioral HealthNationwide Children’s HospitalColumbusUSA
  2. 2.Department of PediatricsThe Ohio State UniversityColumbusUSA
  3. 3.Department of RadiologyNationwide Children’s HospitalColumbusUSA

Personalised recommendations