Advertisement

How the depth of processing modulates emotional interference – evidence from EEG and pupil diameter data

  • Marie Luise Schreiter
  • Witold X. Chmielewski
  • Moritz Mückschel
  • Tjalf Ziemssen
  • Christian BesteEmail author
Article
  • 7 Downloads

Abstract

The ability to process emotionally conflicting information is an important requirement for emotional self-control. While it seems obvious that the impact of interfering emotional information critically depends on how deeply this interfering information is processed, it is still unknown what cognitive subprocesses are most affected by manipulating the depth of processing of emotionally interfering information. We examine these aspects integrating neurophysiological (EEG) and source localization data with pupil diameter data as an indirect index of the norepinephrine (NE) system activity. We show that when processing depth of interfering emotional stimulus dimensions is increased, emotional Stroop effects become stronger. The EEG data show that this was associated with modulations of decision-making processes, as reflected by the P3 event-related potential. Notably, the integration with pupil diameter data suggests that these decision processes were modulated by the NE system, especially when the depth of processing of interfering emotional stimulus dimensions was increased. This likely reflects gain modulation processes to facilitate processing of complex interfering, emotional information. The source localization results suggest that regions in the parietal (BA7) and insular cortex (BA13) are associated with these modulatory effects. The results suggest that overcoming more complex emotional interference triggers engagement of the norepinephrine system (indexed by pupil diameter) to facilitate action control mechanisms in a time-specific manner when deeper processing of emotional stimulus dimensions is required.

Keywords

Emotional conflicts EEG Pupil diameter Norepinephrine system Stroop 

Notes

Acknowledgements

This work was partly supported by Grants from the Deutsche Forschungsgemeinschaft (DFG) BE4045/26-1 and the BMBF 01GL1741C.

Compliance with ethical standards

Open practices statement

The data and materials for all experiments are available at https://osf.io/hm8gw/. The experiment was not preregistered.

Supplementary material

13415_2019_732_MOESM1_ESM.doc (124 kb)
ESM 1 (DOC 124 kb)

References

  1. Adelhöfer, N., Gohil, K., Passow, S., Teufert, B., Roessner, V., Li, S.-C., & Beste, C. (2018). The system-neurophysiological basis for how methylphenidate modulates perceptual-attentional conflicts during auditory processing. Human Brain Mapping, 39(12), 5050–5061.  https://doi.org/10.1002/hbm.24344 Google Scholar
  2. Algom, D., Chajut, E., & Lev, S. (2004). A rational look at the emotional stroop phenomenon: a generic slowdown, not a stroop effect. Journal of Experimental Psychology. General, 133(3), 323–338.  https://doi.org/10.1037/0096-3445.133.3.323 Google Scholar
  3. Aston-Jones, G., & Cohen, J. D. (2005). Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. The Journal of Comparative Neurology, 493(1), 99–110.  https://doi.org/10.1002/cne.20723 Google Scholar
  4. Berg, H. E., Ballard, E. D., Luckenbaugh, D. A., Nugent, A. C., Ionescu, D. F., & Zarate, C. A. (2016). Recognition of Emotional Facial Expressions in Anxious and Nonanxious Depression. Comprehensive Psychiatry, 70, 1–8.  https://doi.org/10.1016/j.comppsych.2016.06.007 Google Scholar
  5. Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., & Linden, D. E. J. (2004). Localizing P300 Generators in Visual Target and Distractor Processing: A Combined Event-Related Potential and Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 24(42), 9353–9360.  https://doi.org/10.1523/JNEUROSCI.1897-04.2004 Google Scholar
  6. Bodmer, B., & Beste, C. (2017). On the dependence of response inhibition processes on sensory modality. Human Brain Mapping, 38(4), 1941–1951.  https://doi.org/10.1002/hbm.23495 Google Scholar
  7. Bodmer, B., Mückschel, M., Roessner, V., & Beste, C. (2018). Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Structure & Function, 223(4), 1797–1810.  https://doi.org/10.1007/s00429-017-1589-6 Google Scholar
  8. Brosch, T., Sander, D., Pourtois, G., & Scherer, K. R. (2008). Beyond fear: rapid spatial orienting toward positive emotional stimuli. Psychological Science, 19(4), 362–370.  https://doi.org/10.1111/j.1467-9280.2008.02094.x Google Scholar
  9. Chen, T., Kendrick, K. M., Feng, C., Sun, S., Yang, X., Wang, X., … Luo, Y.-J. (2016). Dissociable early attentional control mechanisms underlying cognitive and affective conflicts. Scientific Reports, 6.  https://doi.org/10.1038/srep37633
  10. Cheng, W., Rolls, E. T., Zhang, J., Sheng, W., Ma, L., Wan, L., … Feng, J. (2017). Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis. NeuroImage, 148, 169–178.  https://doi.org/10.1016/j.neuroimage.2016.12.068 Google Scholar
  11. Chmielewski, W. X., & Beste, C. (2017). Testing interactive effects of automatic and conflict control processes during response inhibition – A system neurophysiological study. NeuroImage, 146, 1149–1156.  https://doi.org/10.1016/j.neuroimage.2016.10.015 Google Scholar
  12. Chmielewski, W. X., Mückschel, M., Ziemssen, T., & Beste, C. (2017). The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Human Brain Mapping, 38(1), 68–81.  https://doi.org/10.1002/hbm.23344 Google Scholar
  13. Clayson, P. E., & Larson, M. J. (2013). Adaptation to Emotional Conflict: Evidence from a Novel Face Emotion Paradigm. PLOS ONE, 8(9), e75776.  https://doi.org/10.1371/journal.pone.0075776 Google Scholar
  14. Costa, V. D., & Rudebeck, P. H. (2016). More than Meets the Eye: the Relationship between Pupil Size and Locus Coeruleus Activity. Neuron, 89(1), 8–10.  https://doi.org/10.1016/j.neuron.2015.12.031 Google Scholar
  15. Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biological Psychology, 52(2), 95–111.Google Scholar
  16. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 Google Scholar
  17. Delplanque, S., Lavoie, M. E., Hot, P., Silvert, L., & Sequeira, H. (2004). Modulation of cognitive processing by emotional valence studied through event-related potentials in humans. Neuroscience Letters, 356(1), 1–4.  https://doi.org/10.1016/j.neulet.2003.10.014 Google Scholar
  18. Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: analyses and review. Journal of Experimental Psychology. General, 140(4), 552–572.  https://doi.org/10.1037/a0023885 Google Scholar
  19. Dippel, G., & Beste, C. (2015). A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nature Communications, 6, 6587.  https://doi.org/10.1038/ncomms7587 Google Scholar
  20. Dippel, G., Mückschel, M., Ziemssen, T., & Beste, C. (2017). Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry – Implications for the norepinephrine system during inhibitory control. NeuroImage, 157, 575–585.  https://doi.org/10.1016/j.neuroimage.2017.06.037 Google Scholar
  21. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13988–13993.Google Scholar
  22. Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable Neural Systems Resolve Conflict from Emotional versus Nonemotional Distracters. Cerebral Cortex, 18(6), 1475–1484.  https://doi.org/10.1093/cercor/bhm179 Google Scholar
  23. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93.  https://doi.org/10.1016/j.tics.2010.11.004 Google Scholar
  24. Evans, J. D. (1996). Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing Company.Google Scholar
  25. Fokin, V. A., Shelepin, Y. E., Kharauzov, A. K., Trufanov, G. E., Sevost’yanov, A. V., Pronin, S. V., & Koskin, S. A. (2008). Localization of human cortical areas activated on perception of ordered and chaotic images. Neuroscience and Behavioral Physiology, 38(7), 677–685.  https://doi.org/10.1007/s11055-008-9033-2 Google Scholar
  26. Gogolla, N. (2017). The insular cortex. Current Biology: CB, 27(12), R580–R586.  https://doi.org/10.1016/j.cub.2017.05.010 Google Scholar
  27. Gray, H. M., Ambady, N., Lowenthal, W. T., & Deldin, P. (2004). P300 as an index of attention to self-relevant stimuli. Journal of Experimental Social Psychology, 40(2), 216–224.  https://doi.org/10.1016/S0022-1031(03)00092-1 Google Scholar
  28. Hajcak, G., & Olvet, D. M. (2008). The persistence of attention to emotion: brain potentials during and after picture presentation. Emotion (Washington, D.C.), 8(2), 250–255.  https://doi.org/10.1037/1528-3542.8.2.250 Google Scholar
  29. Helton, W. S., Hollander, T. D., Warm, J. S., Matthews, G., Dember, W. N., Wallaart, M., … Hancock, P. A. (2005). Signal regularity and the mindlessness model of vigilance. British Journal of Psychology (London, England: 1953), 96(Pt 2), 249–261.  https://doi.org/10.1348/000712605X38369 Google Scholar
  30. Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: event-related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 25(6), 465–476.Google Scholar
  31. Hoffmann, S., Labrenz, F., Themann, M., Wascher, E., & Beste, C. (2014). Crosslinking EEG time-frequency decomposition and fMRI in error monitoring. Brain Structure & Function, 219(2), 595–605.  https://doi.org/10.1007/s00429-013-0521-y Google Scholar
  32. Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology, 6.  https://doi.org/10.3389/fpsyg.2015.01318
  33. Hong, L., Walz, J. M., & Sajda, P. (2014). Your Eyes Give You Away: Prestimulus Changes in Pupil Diameter Correlate with Poststimulus Task-Related EEG Dynamics. PLOS ONE, 9(3), e91321.  https://doi.org/10.1371/journal.pone.0091321 Google Scholar
  34. Hou, R. H., Freeman, C., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2005). Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology, 181(3), 537–549.  https://doi.org/10.1007/s00213-005-0013-8 Google Scholar
  35. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596.  https://doi.org/10.1162/jocn.2010.21548 Google Scholar
  36. Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron, 89(1), 221–234.  https://doi.org/10.1016/j.neuron.2015.11.028 Google Scholar
  37. Kayser, J., & Tenke, C. E. (2015). On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 97(3), 171–173.  https://doi.org/10.1016/j.ijpsycho.2015.06.001 Google Scholar
  38. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science (New York, N.Y.), 303(5660), 1023–1026.  https://doi.org/10.1126/science.1089910 Google Scholar
  39. Kim, J., Schultz, J., Rohe, T., Wallraven, C., Lee, S.-W., & Bülthoff, H. H. (2015). Abstract representations of associated emotions in the human brain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(14), 5655–5663.  https://doi.org/10.1523/JNEUROSCI.4059-14.2015 Google Scholar
  40. Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577.Google Scholar
  41. Kunde, W., & Mauer, N. (2008). Sequential Modulations of Valence Processing in the Emotional Stroop Task. Experimental Psychology, 55(3), 151–156.  https://doi.org/10.1027/1618-3169.55.3.151 Google Scholar
  42. Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 93(3), 283–297.  https://doi.org/10.1016/j.ijpsycho.2014.06.007 Google Scholar
  43. Ma, J., Liu, C., Zhong, X., Wang, L., & Chen, X. (2014). Emotional Body-Word Conflict Evokes Enhanced N450 and Slow Potential. PLOS ONE, 9(5), e95198.  https://doi.org/10.1371/journal.pone.0095198 Google Scholar
  44. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109(2), 163–203.Google Scholar
  45. Marco-Pallarés, J., Grau, C., & Ruffini, G. (2005). Combined ICA-LORETA analysis of mismatch negativity. NeuroImage, 25(2), 471–477.  https://doi.org/10.1016/j.neuroimage.2004.11.028 Google Scholar
  46. Marusak, H. A., Martin, K. R., Etkin, A., & Thomason, M. E. (2015). Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 40(5), 1250–1258.  https://doi.org/10.1038/npp.2014.311 Google Scholar
  47. McKenna, F. P., & Sharma, D. (2004). Reversing the Emotional Stroop Effect Reveals That It Is Not What It Seems: The Role of Fast and Slow Components. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 382–392.  https://doi.org/10.1037/0278-7393.30.2.382 Google Scholar
  48. Mennes, M., Wouters, H., Bergh, B. V. D., Lagae, L., & Stiers, P. (2008). ERP correlates of complex human decision making in a gambling paradigm: Detection and resolution of conflict. Psychophysiology, 45(5), 714–720.  https://doi.org/10.1111/j.1469-8986.2008.00678.x Google Scholar
  49. Mückschel, M., Chmielewski, W., Ziemssen, T., & Beste, C. (2017a). The norepinephrine system shows information-content specific properties during cognitive control - Evidence from EEG and pupillary responses. NeuroImage, 149, 44–52.  https://doi.org/10.1016/j.neuroimage.2017.01.036 Google Scholar
  50. Mückschel, M., Gohil, K., Ziemssen, T., & Beste, C. (2017b). The norepinephrine system and its relevance for multi-component behavior. NeuroImage, 146, 1062–1070.  https://doi.org/10.1016/j.neuroimage.2016.10.007 Google Scholar
  51. Mückschel, M., Stock, A.-K., & Beste, C. (2014). Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cerebral Cortex (New York, N.Y.: 1991), 24(8), 2120–2129.  https://doi.org/10.1093/cercor/bht066 Google Scholar
  52. Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus–noradrenergic arousal function in humans. Psychophysiology, 48(11), 1532–1543.  https://doi.org/10.1111/j.1469-8986.2011.01226.x Google Scholar
  53. Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162–175.  https://doi.org/10.1111/j.1469-8986.2010.01057.x Google Scholar
  54. Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, N. J. A., Mars, R. B., Holroyd, C. B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. NeuroImage, 25(4), 1302–1309.Google Scholar
  55. Nunez, P. L., & Pilgreen, K. L. (1991). The Spline-Laplacian in Clinical Neurophysiology: A Method to Improve EEG Spatial Resolution. Journal of Clinical Neurophysiology, 8(4), 397–413.  https://doi.org/10.1097/00004691-199110000-00005 Google Scholar
  56. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.  https://doi.org/10.1016/j.tics.2005.03.010 Google Scholar
  57. Ocklenburg, S., Güntürkün, O., & Beste, C. (2011). Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage, 55(4), 1771–1778.  https://doi.org/10.1016/j.neuroimage.2011.01.035 Google Scholar
  58. Pan, F., Lu, Q., Chen, Y., Wu, X., & Li, Q. (2016). Emotional conflict occurs at a late stage: evidence from the paired-picture paradigm. Translational Neuroscience, 7(1), 56–61.  https://doi.org/10.1515/tnsci-2016-0009 Google Scholar
  59. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl D, 5–12.Google Scholar
  60. Phillips, M. A., Szabadi, E., & Bradshaw, C. M. (2000). Comparison of the effects of clonidine and yohimbine on spontaneous pupillary fluctuations in healthy human volunteers. Psychopharmacology, 150(1), 85–89.Google Scholar
  61. Pool, E., Brosch, T., Delplanque, S., & Sander, D. (2016). Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychological Bulletin, 142(1), 79–106.  https://doi.org/10.1037/bul0000026 Google Scholar
  62. Salinas, E., & Thier, P. (2000). Gain Modulation: A Major Computational Principle of the Central Nervous System. Neuron, 27(1), 15–21.  https://doi.org/10.1016/S0896-6273(00)00004-0 Google Scholar
  63. Saunders, B., Milyavskaya, M., & Inzlicht, M. (2015). Variation in Cognitive Control as Emotion Regulation. Psychological Inquiry, 26(1), 108–115.  https://doi.org/10.1080/1047840X.2015.962396 Google Scholar
  64. Schreiter, M. L., Chmielewski, W., & Beste, C. (2018a). Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts. NeuroImage, 174, 11–21.  https://doi.org/10.1016/j.neuroimage.2018.03.017 Google Scholar
  65. Schreiter, M. L., Chmielewski, W. X., & Beste, C. (2018b). How socioemotional setting modulates late-stage conflict resolution processes in the lateral prefrontal cortex. Cognitive, Affective, & Behavioral Neuroscience, 1–15.  https://doi.org/10.3758/s13415-018-0585-5
  66. Sekihara, K., Sahani, M., & Nagarajan, S. S. (2005). Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage, 25(4), 1056–1067.  https://doi.org/10.1016/j.neuroimage.2004.11.051 Google Scholar
  67. Servan-Schreiber, D., Printz, H., & Cohen, J. D. (1990). A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science (New York, N.Y.), 249(4971), 892–895.Google Scholar
  68. Shang, Q., Fu, H., Qiu, W., & Ma, Q. (2016). Event-related lateralized readiness potential correlates of the emotion-priming Simon effect. Experimental Brain Research, 234(8), 2123–2132.  https://doi.org/10.1007/s00221-016-4614-8 Google Scholar
  69. Shen, Y., Xue, S., Wang, K., & Qiu, J. (2013). Neural time course of emotional conflict control: an ERP study. Neuroscience Letters, 541, 34–38.  https://doi.org/10.1016/j.neulet.2013.02.032 Google Scholar
  70. Simmons, A., Matthews, S. C., Paulus, M. P., & Stein, M. B. (2008). Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neuroscience Letters, 430(2), 92–97.  https://doi.org/10.1016/j.neulet.2007.10.030 Google Scholar
  71. Takeichi, H., Koyama, S., Terao, A., Takeuchi, F., Toyosawa, Y., & Murohashi, H. (2010). Comprehension of degraded speech sounds with m-sequence modulation: an fMRI study. NeuroImage, 49(3), 2697–2706.  https://doi.org/10.1016/j.neuroimage.2009.10.063 Google Scholar
  72. Twomey, D. M., Murphy, P. R., Kelly, S. P., & O’Connell, R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. The European Journal of Neuroscience, 42(1), 1636–1643.  https://doi.org/10.1111/ejn.12936 Google Scholar
  73. Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015). Noradrenaline and Dopamine Neurons in the Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys. Journal of Neuroscience, 35(20), 7866–7877.  https://doi.org/10.1523/JNEUROSCI.0454-15.2015 Google Scholar
  74. Warren, C. M., & Holroyd, C. B. (2012). The Impact of Deliberative Strategy Dissociates ERP Components Related to Conflict Processing vs. Reinforcement Learning. Frontiers in Neuroscience, 6, 43.  https://doi.org/10.3389/fnins.2012.00043
  75. Weissman, D. H., & Carp, J. (2013). Congruency sequence effects are driven by previous-trial congruency, not previous-trial response conflict. Frontiers in Psychology, 4.  https://doi.org/10.3389/fpsyg.2013.00587
  76. Wolff, N., Mückschel, M., Ziemssen, T., & Beste, C. (2018). The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas. Brain Structure & Function, 223(2), 925–940.  https://doi.org/10.1007/s00429-017-1531-y Google Scholar
  77. Xue, S., Li, Y., Kong, X., He, Q., Liu, J., & Qiu, J. (2016). The dissociable neural dynamics of cognitive conflict and emotional conflict control: An ERP study. Neuroscience Letters, 619, 149–154.  https://doi.org/10.1016/j.neulet.2016.03.020 Google Scholar
  78. Yang, J., Zeng, J., Meng, X., Zhu, L., Yuan, J., Li, H., & Yusoff, N. (2013). Positive words or negative words: Whose valence strength are we more sensitive to? Brain Research, 1533, 91–104.  https://doi.org/10.1016/j.brainres.2013.08.020 Google Scholar
  79. Zhang, L., Song, Y., Liu, L., & Liu, J. (2016). Dissociable roles of internal feelings and face recognition ability in facial expression decoding. NeuroImage, 132, 283–292.  https://doi.org/10.1016/j.neuroimage.2016.02.049 Google Scholar
  80. Zhao, K., Zhao, J., Zhang, M., Cui, Q., & Fu, X. (2017). Neural Responses to Rapid Facial Expressions of Fear and Surprise. Frontiers in Psychology, 8, 761.  https://doi.org/10.3389/fpsyg.2017.00761
  81. Zinchenko, A., Kanske, P., Obermeier, C., Schröger, E., & Kotz, S. A. (2015). Emotion and goal-directed behavior: ERP evidence on cognitive and emotional conflict. Social Cognitive and Affective Neuroscience, 10(11), 1577–1587.  https://doi.org/10.1093/scan/nsv050 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Marie Luise Schreiter
    • 1
  • Witold X. Chmielewski
    • 1
  • Moritz Mückschel
    • 1
  • Tjalf Ziemssen
    • 2
  • Christian Beste
    • 1
    Email author
  1. 1.Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnical University of DresdenDresdenGermany
  2. 2.MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of MedicineTechnical University of DresdenDresdenGermany

Personalised recommendations