Advertisement

Age-Related Differences in Motivational Integration and Cognitive Control

  • Debbie M. YeeEmail author
  • Sarah Adams
  • Asad Beck
  • Todd S. Braver
Rubrique: Special Issue/Reward Systems, Cognition,and Emotion

Abstract

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the motivational value of diverse incentives are integrated in the brain into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N = 44) and younger (N = 54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. These data suggest that older adults may have impairments in incentive integration and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.

Keywords

Aging Motivation Cognitive control Reward Decision-making 

Notes

Acknowledgments

The authors thank our research assistants Katie Shapiro, Roderick Seow, and Jessica Weiss for data collection. We additionally appreciate Tammy English, Denise Head, Dave Balota, and members of the CCP lab, for their insightful perspectives on theoretical questions and expertise for data analyses.

Funding

This work was supported by the National Institutes of Health grants R01AG043461, R21MH105800, and R37MH066078 to TSB. Additionally, DMY was supported by T32NS073547, T32AG000030, and F31DA042574.

Supplementary material

13415_2019_713_MOESM1_ESM.pdf (253 kb)
ESM 1 (PDF 253 kb)

References

  1. Aarts, E., Roelofs, A., Franke, B., Rijpkema, M., Fernández, G., Helmich, R. C., & Cools, R. (2010). Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology, 35(9), 1943–1951.  https://doi.org/10.1038/npp.2010.68 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adrover-Roig, D., & Barceló, F. (2010). Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching. Cortex, 46(4), 434–450.  https://doi.org/10.1016/j.cortex.2009.09.012 CrossRefPubMedGoogle Scholar
  3. Bäckman, L., Lindenberger, U., Li, S., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning : Recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5), 670–677.  https://doi.org/10.1016/j.neubiorev.2009.12.008 CrossRefPubMedGoogle Scholar
  4. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791–807.  https://doi.org/10.1016/j.neubiorev.2006.06.005 CrossRefPubMedGoogle Scholar
  5. Bamidis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., … Papageorgiou, S. G. (2014). A review of physical and cognitive interventions in aging. Neuroscience and Biobehavioral Reviews, 44, 206–220.  https://doi.org/10.1016/j.neubiorev.2014.03.019 CrossRefPubMedGoogle Scholar
  6. Bates, D. M., Maechler, M., Ben, B., Walker, S., Bojesen, Christensen, Rune Singmann, H., Singmann, H., & Dai, B. (2015). Linear mixed-effects models using Eigen and S4. R package version (2015). Retrieved from http://cran.r-project.org/web/packages/lme4/lme4.pdf
  7. Berry, A. S., Jagust, W. J., & Hsu, M. (2018a). Age-related variability in decision-making : Insights from neurochemistry. Cognitive Affective & Behavioral Neuroscience.  https://doi.org/10.3758/s13415-018-00678-9
  8. Berry, A. S., Shah, V. D., Baker, S. L., Vogel, J. W., O’Neil, J. P., Janabi, M., … Jagust, W. J. (2016). Aging Affects Dopaminergic Neural Mechanisms of Cognitive Flexibility. The Journal of Neuroscience, 36(50), 12559–12569.  https://doi.org/10.1523/JNEUROSCI.0626-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berry, A. S., Shah, V. D., & Jagust, W. J. (2018b). The Influence of Dopamine on Cognitive Flexibility Is Mediated by Functional Connectivity in Young but Not Older Adults. Journal of Cognitive Neuroscience, 30(9), 1330–1344.  https://doi.org/10.1162/jocn CrossRefPubMedGoogle Scholar
  10. Botvinick, M. M., & Braver, T. S. (2015). Motivation and Cognitive Control: From Behavior to Neural Mechanism. Annual Review of Psychology, 66, 83–113.  https://doi.org/10.1146/annurev-psych-010814-015044 CrossRefPubMedGoogle Scholar
  11. Boyce, J. M., & Shone, G. R. (2006). Effects of ageing on smell and test. Postgraduate Medical Journal, 82(967), 301–4.  https://doi.org/10.1136/pgmj.2005.039651 CrossRefGoogle Scholar
  12. Braem, S., Hickey, C., Duthoo, W., & Notebaert, W. (2014). Reward Determines the Context-Sensitivity of Cognitive Control. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1769–1778.  https://doi.org/10.1037/a0037554 CrossRefPubMedGoogle Scholar
  13. Braskie, M. N., Wilcox, C. E., Landau, S. M., Neil, J. P. O., Baker, S. L., Madison, C. M., … Jagust, W. J. (2008). Relationship of Striatal Dopamine Synthesis Capacity to Age and Cognition. Journal of Neuroscience, 28(52), 14320–14328.  https://doi.org/10.1523/JNEUROSCI.3729-08.2008 CrossRefPubMedGoogle Scholar
  14. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.  https://doi.org/10.1016/j.tics.2011.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience and Biobehavioral Reviews, 26(7), 809–817.  https://doi.org/10.1016/S0149-7634(02)00067-2 CrossRefPubMedGoogle Scholar
  16. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII (pp. 713–737). Cambridge, Massachusetts: MIT Press.  https://doi.org/10.1016/S0165-0173(03)00143-7 CrossRefGoogle Scholar
  17. Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., … Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–72.  https://doi.org/10.3758/s13415-014-0300-0 CrossRefGoogle Scholar
  18. Braver, T. S., & West, R. (2008). Memory, working executive control, and aging. In The Handbook of Aging and Cognition (pp. 311–372).Google Scholar
  19. Brown, S. B. R. E., & Ridderinkhof, K. R. (2009). Aging and the neuroeconomics of decision making : A review. Cognitive, Affective, & Behavioral Neuroscience, 9(4), 365–379.  https://doi.org/10.3758/CABN.9.4.365 CrossRefGoogle Scholar
  20. Carpenter, C. R., Bassett, E. R., Fischer, G. M., Shirshekan, J., Galvin, J. E., & Morris, J. C. (2011). Four Sensitive Screening Tools to Detect Cognitive Dysfunction in Geriatric Emergency Department Patients : Brief Alzheimer’s Screen, Short Blessed Test , Ottawa 3DY , and the Caregiver-completed AD8. Society for Academic Emergency Medicine, 18(4), 374–384.  https://doi.org/10.1111/j.1553-2712.2011.01040.x
  21. Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312, 1913–1915.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carstensen, L. L., & Mikels, J. A. (2005). At the intersection of emotion and cognition. Current Directions in Psychological Science, 14(3), 117–121.  https://doi.org/10.1111/j.0963-7214.2005.00348.x CrossRefGoogle Scholar
  23. Carstensen, L. L., Turan, B., Scheibe, S., Ram, N., Ersner-Hershfield, H., Samanez-Larkin, G. R., … Nesselroade, J. R. (2011). Emotional experience improves with age: evidence based on over 10 years of experience sampling. Psychology and Aging, 26(1), 21–33.  https://doi.org/10.1037/a0021285 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319–333.  https://doi.org/10.1037//0022-3514.67.2.319 CrossRefGoogle Scholar
  25. Castel, A. D. (2007). The adaptive and strategic use of memory by older adults: Evaluative processing and value-directed remembering. Psychology of Learning and Motivation - Advances in Research and Theory, 48, 225–270.  https://doi.org/10.1016/S0079-7421(07)48006-9 CrossRefGoogle Scholar
  26. Charles, S. T., & Carstensen, L. L. (2010). Social and emotional aging. Annual Review of Psychology, 61(383–409), 383–409.  https://doi.org/10.1146/annurev.psych.093008.100448 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(39), 12315–20.  https://doi.org/10.1523/JNEUROSCI.2575-09.2009 CrossRefGoogle Scholar
  28. Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontiers in Psychology, 4(January).  https://doi.org/10.3389/fpsyg.2013.00015
  29. Chiew, K. S., & Braver, T. S. (2016). Reward favors the prepared: Incentive and task-informative cues interact to enhance attentional control. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 52–66.PubMedGoogle Scholar
  30. Cohen, M. S., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2014). Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions. Cognitive, Affective and Behavioral Neuroscience 14(2), 578–592.  https://doi.org/10.3758/s13415-014-0275-x CrossRefPubMedGoogle Scholar
  31. Cools, R. (2008). Role of dopamine in the motivational and cognitive control of behavior. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 14(4), 381–95.  https://doi.org/10.1177/1073858408317009 CrossRefGoogle Scholar
  32. Cools, R. (2016). The costs and benefits of brain dopamine for cognitive control. WIREs Cogn Sci, 7, 317–329.  https://doi.org/10.1002/wcs.1401 CrossRefGoogle Scholar
  33. Cumming, G. (2014). The new statistics : Why and how. Psychological Science, 25(1), 7–29.  https://doi.org/10.1177/0956797613504966 CrossRefPubMedGoogle Scholar
  34. Denburg, N. L., Cole, C. A., Hernandez, M., Yamada, T. H., Tranel, D., Bechara, A., & Wallace, R. B. (2007). The orbitofrontal cortex, real-world decision making, and normal aging. Annals of the New York Academy of Sciences, 1121, 480–498.  https://doi.org/10.1196/annals.1401.031 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Di Rosa, E., Schiff, S., Cagnolati, F., & Mapelli, D. (2015). Motivation–cognition interaction: How feedback processing changes in healthy ageing and in Parkinson’s disease. Aging Clinical and Experimental Research, 27(6), 911–920.  https://doi.org/10.1007/s40520-015-0358-8 CrossRefPubMedGoogle Scholar
  36. Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15, 561–572.CrossRefPubMedGoogle Scholar
  37. Eckert, M. A., Keren, N. I., Roberts, D. R., Calhoun, V. D., & Harris, K. C. (2010). Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Frontiers in Human Neuroscience, 4(March), 1–14.  https://doi.org/10.3389/neuro.09.010.2010 CrossRefGoogle Scholar
  38. English, T., & Carstensen, L. L. (2014). Emotional experience in the mornings and the evenings: Consideration of age differences in specific emotions by time of day. Frontiers in Psychology, 5, 1–9.  https://doi.org/10.3389/fpsyg.2014.00185 CrossRefGoogle Scholar
  39. Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and motivation on cognitive effort: Implications for cognitive engagement in older adulthood. Psychology and Aging, 28(2), 495–504.  https://doi.org/10.1037/a0031255 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Eppinger, B., Nystrom, L. E., & Cohen, J. D. (2012). Reduced sensitivity to immediate reward during decision-making in older than younger adults. PLoS ONE, 7(5), 1–10.  https://doi.org/10.1371/journal.pone.0036953 CrossRefGoogle Scholar
  41. Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced striatal responses to reward prediction errors in older compared with younger adults. The Journal of Neuroscience, 33(24), 9905–12.  https://doi.org/10.1523/JNEUROSCI.2942-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ferdinand, N. K., & Czernochowski, D. (2018). Motivational influences on performance monitoring and cognitive control across the adult lifespan. Frontiers in Psychology, 9(JUN), 1–19.  https://doi.org/10.3389/fpsyg.2018.01018 CrossRefGoogle Scholar
  43. Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Age Changes in Processing Speed as a Leading Indicator of Cognitive Aging. Psychology and Aging, 22(3), 558–568.  https://doi.org/10.1037/0882-7974.22.3.558 CrossRefPubMedGoogle Scholar
  44. Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E.-J., Derrfuss, J., Imperati, D., & Brown, S. (2011). The speed-accuracy tradeoff in the elderly brain: A structural model-based approach. Journal of Neuroscience, 31(47), 17242–17249.  https://doi.org/10.1523/JNEUROSCI.0309-11.2011 CrossRefPubMedGoogle Scholar
  45. Fröber, K., & Dreisbach, G. (2014). The differential influences of positive affect, random reward, and performance-contingent reward on cognitive control. Cogn Affect Behav Neurosci, 14, 530–547.  https://doi.org/10.3758/s13415-014-0259-x CrossRefPubMedGoogle Scholar
  46. Goldman-Rakic, P. S. (1992). Dopamine-mediated mechanisms of the prefrontal cortex. Seminars in Neuroscience, 4(2), 149–159.  https://doi.org/10.1016/1044-5765(92)90013-R CrossRefGoogle Scholar
  47. Green, L., Fry, A. F., & Myerson, J. (1994). Discounting of delayed rewards: A life-span comparison. Psychological Science, 5(1), 33–36.  https://doi.org/10.1111/j.1467-9280.1994.tb00610.x CrossRefGoogle Scholar
  48. Green, L., Myerson, J., Lichtman, D., Rosen, S., & Fry, A. F. (1996). Temporal discounting in choice between delayed rewards: The role of age and income. Psychology and Aging, 11(1), 79–84.  https://doi.org/10.1037/0882-7974.11.1.79 CrossRefPubMedGoogle Scholar
  49. Green, L., Myerson, J., & Ostaszewski, P. (1999). Discounting of delayed rewards across the life span: Age differences in individual discounting functions. Behavioural Processes, 46(1), 89–96.  https://doi.org/10.1016/S0376-6357(99)00021-2 CrossRefPubMedGoogle Scholar
  50. Guitart-Masip, M., Salami, A., Garrett, D., Rieckmann, A., Lindenberger, U., & Bäckman, L. (2016). BOLD variability is related to dopaminergic neurotransmission and cognitive aging. Cerebral Cortex, 26(5), 2074–2083.  https://doi.org/10.1093/cercor/bhv029 CrossRefPubMedGoogle Scholar
  51. Harris, P., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381.  https://doi.org/10.1016/j.jbi.2008.08.010 CrossRefPubMedGoogle Scholar
  52. Harsay, H. A., Buitenweg, J. I. V, Wijnen, J. G., Guerreiro, M. J. S., & Richard, K. (2010). Remedial effects of motivational incentive on declining cognitive control in healthy aging and Parkinson ’ s disease. Frontiers in Aging Neuroscience, 2(October), 1–12.  https://doi.org/10.3389/fnagi.2010.00144 CrossRefGoogle Scholar
  53. Harsay, H. A., Cohen, M. X., Reneman, L., & Ridderinkhof, K. R. (2011). How the aging brain translates motivational incentive into action: The role of individual differences in striato-cortical white matter pathways. Developmental Cognitive Neuroscience, 1(4), 530–539.  https://doi.org/10.1016/j.dcn.2011.06.005 CrossRefPubMedGoogle Scholar
  54. Hefer, C., & Dreisbach, G. (2017). How performance-contingent reward prospect modulates cognitive control: Increased cue maintenance at the cost of decreased flexibility. Journal of Experimental Psychology: Learning, Memory, and Cognition.  https://doi.org/10.1037/xlm0000397
  55. Hess, T. M., & Ennis, G. E. (2011). Age differences in the effort and costs associated with cognitive activity. The Journals of Gereontology, Series B: Psychological Sciences and Social Sciences, 67(June), 447–455.  https://doi.org/10.1093/geronb/gbr129.CrossRefGoogle Scholar
  56. Hlavac, M. (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2.2.Google Scholar
  57. Hoogeveen, H. R., Dalenberg, J. R., Renken, R. J., ter Horst, G. J., & Lorist, M. M. (2015). Neural processing of basic tastes in healthy young and older adults - an fMRI study. NeuroImage, 119, 1–12.  https://doi.org/10.1016/j.neuroimage.2015.06.017 CrossRefPubMedGoogle Scholar
  58. Jacobson, A., Green, E., & Murphy, C. (2010). Age-related functional changes in gustatory and reward processing regions: An fMRI study. NeuroImage, 53(2), 602–610.  https://doi.org/10.1016/j.neuroimage.2010.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jimura, K., & Braver, T. S. (2010). Age-Related Shifts in Brain Activity Dynamics during Task Switching. Cerebral Cortex, 20(June), 1420–1431.  https://doi.org/10.1093/cercor/bhp206 CrossRefPubMedGoogle Scholar
  60. Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8871–6.  https://doi.org/10.1073/pnas.1002007107 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jong, R. De. (2001). Adult age differences in goal activation and goal maintenance. European Journal of Cognitive Psychology, 13(1–2), 71–89.  https://doi.org/10.1080/09541440042000223 CrossRefGoogle Scholar
  62. Kaasinen, V., & Rinne, J. O. (2002). Functional imaging studies of dopamine system and cognition in normal aging and Parkinson ’ s disease. Neuroscience and Biobehavioral Reviews, 26, 785–793.CrossRefPubMedGoogle Scholar
  63. Kaasinen, V., Vilkman, H., Hietala, J., Någren, K., Helenius, H., Olsson, H., … Rinne, J. O. (2000). Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 21(5), 683–688.  https://doi.org/10.1016/S0197-4580(00)00149-4 CrossRefPubMedGoogle Scholar
  64. Kang, G., Wang, L., & Zhou, X. (2017). Reward interacts with modality shift to reduce cross-modal conflict. Journal of Vision, 17(1)(19), 1–14.  https://doi.org/10.1167/17.1.19.doi CrossRefGoogle Scholar
  65. Karayanidis, F., Whitson, L. R., Heathcote, A., & Michie, P. T. (2011). Variability in proactive and reactive cognitive control processes across the adult lifespan. Frontiers in Psychology, 2(NOV), 1–19.  https://doi.org/10.3389/fpsyg.2011.00318 CrossRefGoogle Scholar
  66. Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiology of Aging, 57, 36–46.  https://doi.org/10.1016/j.neurobiolaging.2017.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Katzman, R., Brown, T., Fuld, P., Peck, A., Schechter, R., & Schimmel, H. (1983). Validation of a Short Orientation-Memory-Concentration Test of Cognitive Impairment. The American Journal of Psychiatry, 140(6), 734–739.CrossRefPubMedGoogle Scholar
  68. Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15(1), 28–43.  https://doi.org/10.1016/j.arr.2014.02.004 CrossRefPubMedGoogle Scholar
  69. Knutson, B., Fong, C. A. G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport, 12(17), 3683–3687.CrossRefPubMedGoogle Scholar
  70. Kopp, B., Lange, F., Howe, J., & Wessel, K. (2014). Age-related changes in neural recruitment for cognitive control. Brain and Cognition, 85(1), 209–219.  https://doi.org/10.1016/j.bandc.2013.12.008 CrossRefPubMedGoogle Scholar
  71. Kray, J., & Ferdinand, N. K. (2014). Task Switching and Aging. In J. A. Grange & G. Houghton (Eds.), Task switching and cognitive control (pp. 350–371). New York, NY: Oxford University Press.  https://doi.org/10.1093/acprof:osobl/9780199921959.003.0014 CrossRefGoogle Scholar
  72. Krug, M., & Braver, T. S. (2014). Motivation and Cognitive Control: Going Beyond Monetary Incentives. In The psychological science of money (pp. 137–158).  https://doi.org/10.1007/978-1-4939-0959-9_10
  73. Kurnianingsih, Y. A., Sim, S. K. Y., Chee, M. W. L., & Mullette-Gillman, O. A. (2015). Aging and loss decision making: increased risk aversion and decreased use of maximizing information, with correlated rationality and value maximization. Frontiers in Human Neuroscience, 9(May), 1–12.  https://doi.org/10.3389/fnhum.2015.00280 CrossRefGoogle Scholar
  74. Kuznetsova, A., Brockoff, P. B., & Christensen, R. H. (2015). lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version (2015). Retrieved from http://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf
  75. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science : a practical primer for t -tests and ANOVAs, 4(November), 1–12.  https://doi.org/10.3389/fpsyg.2013.00863
  76. Lamichhane, B., McDaniel, M. A., Waldum, E. R., & Braver, T. S. (2018). Age-related changes in neural mechanisms of prospective memory. Cognitive, Affective, & Behaviorial Neuroscience.  https://doi.org/10.3758/s13415-018-0617-1
  77. Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., & Jagust, W. J. (2009). Striatal dopamine and working memory. Cerebral Cortex, 19(2), 445–454.  https://doi.org/10.1093/cercor/bhn095 CrossRefPubMedGoogle Scholar
  78. Li, S. C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 29, 148–158.  https://doi.org/10.1016/j.conb.2014.07.009 CrossRefPubMedGoogle Scholar
  79. Ličen, M., Hartmann, F., Repovš, G., & Slapničar, S. (2016). The impact of social pressure and monetary incentive on cognitive control. Frontiers in Psychology, 7(February), 1–16.  https://doi.org/10.3389/fpsyg.2016.00093 CrossRefGoogle Scholar
  80. Löckenhoff, C. E., O’Donoghue, T., & Dunning, D. (2011). Age differences in temporal discounting: The role of dispositional affect and anticipated emotions. Psychology and Aging, 26(2), 274–284.  https://doi.org/10.1037/a0023280 CrossRefPubMedGoogle Scholar
  81. Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59(1), 647–672.  https://doi.org/10.1146/annurev.psych.59.103006.093710 CrossRefPubMedGoogle Scholar
  82. Lüdecke, D. (2019). sjstats: Statistical functions for regression models (version 0.17.13).  https://doi.org/10.5281/zenodo.1284472
  83. MacPherson, S. E., Phillips, L. H., & Della Sala, S. (2002). Age, executive function, and social decision making: a dorsolateral prefrontal theory of cognitive aging. Psychology and Aging Aging, 17(4), 598–609.  https://doi.org/10.1037//0882-7974.17.4.598 CrossRefGoogle Scholar
  84. Magezi, D. a. (2015). Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui). Frontiers in Psychology, 6(January), 1–7.  https://doi.org/10.3389/fpsyg.2015.00002 CrossRefGoogle Scholar
  85. Manard, M., Carabin, D., Jaspar, M., & Collette, F. (2014). Age-related decline in cognitive control: the role of fluid intelligence and processing speed. BMC Neuroscience, 15, 7.  https://doi.org/10.1186/1471-2202-15-7 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Manard, M., François, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioural Brain Research, 320, 504–516.  https://doi.org/10.1016/j.bbr.2016.10.026 CrossRefPubMedGoogle Scholar
  87. Marschner, A., Mell, T., Wartenburger, I., Villringer, A., Reischies, F. M., & Heekeren, H. R. (2005). Reward-based decision-making and aging. Brain Research Bulletin, 67(5), 382–390.  https://doi.org/10.1016/j.brainresbull.2005.06.010 CrossRefPubMedGoogle Scholar
  88. Mather, M. (2016). The Affective Neuroscience of Aging. Annual Review of Psychology, 67(1), 213–238.  https://doi.org/10.1146/annurev-psych-122414-033540 CrossRefPubMedGoogle Scholar
  89. Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496–502.  https://doi.org/10.1016/j.tics.2005.08.005 CrossRefPubMedGoogle Scholar
  90. Mikels, J. A., & Reed, A. E. (2009). Monetary losses do not loom large in later life: Age differences in the framing effect. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 64(4), 457–460.  https://doi.org/10.1093/geronb/gbp043 CrossRefGoogle Scholar
  91. Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: insights from an fmri study of the stroop task. Brain and Cognition, 49(3), 277–296.  https://doi.org/10.1006/brcg.2001.1501 CrossRefPubMedGoogle Scholar
  92. Minear, M., & Shah, P. (2008). Training and transfer effects in task switching. Memory & Cognition, 36(8), 1470–1483.  https://doi.org/10.3758/MC.336.8.1470 CrossRefGoogle Scholar
  93. Mohr, P. N. C., Li, S., & Heekeren, H. R. (2010). Neuroeconomics and aging: Neuromodulation of economic decision making in old age. Neuroscience and Biobehavioral Reviews, 34, 678–688.  https://doi.org/10.1016/j.neubiorev.2009.05.010 CrossRefPubMedGoogle Scholar
  94. Montague, P. R., King-casas, B., & Cohen, J. D. (2006). Imaging Valuation Models in Human Choice. Annual Review of Neuroscience, 29, 417–448.  https://doi.org/10.1146/annurev.neuro.29.051605.112903 CrossRefPubMedGoogle Scholar
  95. Mutter, S. A., Naylor, J. C., & Patterson, E. R. (2005). The effects of age and task context on Stroop task performance. Memory and Cognition, 33(3), 514–530.  https://doi.org/10.3758/BF03193068 CrossRefPubMedGoogle Scholar
  96. Nakagawa, S., Johnson, P. C. D., Schielzeth, H., Building, G. K., & Glasgow, G. (2017). The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(20170213), 1–11.Google Scholar
  97. Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.  https://doi.org/10.1016/S0301-0082(02)00011-4 CrossRefPubMedGoogle Scholar
  98. Padmala, S., & Pessoa, L. (2011). Reward Reduces Conflict by Enhancing Attentional Control and Biasing Visual Cortical Processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432.  https://doi.org/10.1162/jocn_a_00011 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 1010–1028.  https://doi.org/10.1093/cercor/bhm135 CrossRefPubMedGoogle Scholar
  100. Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. G., Ingvar, M., & Buckner, R. L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16(7), 907–915.  https://doi.org/10.1093/cercor/bhj036 CrossRefPubMedGoogle Scholar
  101. R Core Team. (2017). R: A language for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  102. Rabbitt, P. (1979). How old and young subjects monitor and control responses for accuracy and speed. British Journal of Psychology.  https://doi.org/10.1111/j.2044-8295.1979.tb01687.x
  103. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545–556.  https://doi.org/10.1038/nrn2357 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Redick, T. S. (2014). Cognitive control in context: Working memory capacity and proactive control. Acta Psychologica, 145(1), 1–9.  https://doi.org/10.1016/j.actpsy.2013.10.010 CrossRefPubMedGoogle Scholar
  105. Reed, A. E., & Carstensen, L. L. (2012). The theory behind the age-related positivity effect. Frontiers in Psychology, 3(SEP), 1–9.  https://doi.org/10.3389/fpsyg.2012.00339 CrossRefGoogle Scholar
  106. Reuter-Lorenz, P. A., & Park, D. C. (2010). Human Neuroscience and the Aging Mind: at Old Problems A New Look. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 65(4), 405–415.  https://doi.org/10.1093/geronb/gbq035 CrossRefGoogle Scholar
  107. Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207–231.  https://doi.org/10.1037/0096-3445.124.2.207 CrossRefGoogle Scholar
  108. RStudioTeam. (2016). RStudio: Integrated Development for R. Boston, MA: Rstudio, Inc. Retrieved from http://www.rstudio.com/ Google Scholar
  109. Rutledge, R. B., Smittenaar, P., Zeidman, P., Brown, H. R., Adams, R. A., Lindenberger, U., … Dolan, R. J. (2016). Risk Taking for Potential Reward Decreases across the Lifespan. Current Biology, 26(12), 1634–1639.  https://doi.org/10.1016/j.cub.2016.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509–515.  https://doi.org/10.1038/74889 CrossRefPubMedGoogle Scholar
  111. Salthouse, T. A. (1996). The Processing-Speed Theory of Adult Age Differences in Cognition. Psychological Review, 103(3), 403–428.CrossRefPubMedGoogle Scholar
  112. Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54(1–3), 35–54.  https://doi.org/10.1016/S0301-0511(00)00052-1 CrossRefPubMedGoogle Scholar
  113. Salthouse, T. A. (2005). What and when of cognitive aging. Current Directions in Psychological Science, 13(4), 140–144.  https://doi.org/10.1111/j.0963-7214.2004.00293.x CrossRefGoogle Scholar
  114. Samanez-Larkin, G. R., Gibbs, S. E. B., Khanna, K., Nielsen, L., Carstensen, L. L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10(6), 787–791.  https://doi.org/10.1038/nn1894 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: changes in affective and motivational circuits. Nature Reviews Neuroscience, 16(May).  https://doi.org/10.1038/nrn3917
  116. Samanez-Larkin, G. R., Mata, R., Radu, P. T., Ballard, I. C., Carstensen, L. L., & McClure, S. M. (2011). Age differences in striatal delay sensitivity during intertemporal choice in healthy adults. Frontiers in Neuroscience, 5(NOV), 1–12.  https://doi.org/10.3389/fnins.2011.00126 CrossRefGoogle Scholar
  117. Samanez-Larkin, G. R., Worthy, D. A., Mata, R., McClure, S. M., & Knutson, B. (2014). Adult age differences in frontostriatal representation of prediction error but not reward outcome. Cognitive Affective & Behavioral Neuroscience 672–682.  https://doi.org/10.3758/s13415-014-0297-4
  118. Schmitt, H., Ferdinand, N. K., & Kray, J. (2015). The influence of monetary incentives on context processing in younger and older adults: an event-related potential study, 416–434.  https://doi.org/10.3758/s13415-015-0335-x
  119. Schmitt, H., Kray, J., & Ferdinand, N. K. (2017). Does the Effort of Processing Potential Incentives Influence the Adaption of Context Updating in Older Adults? Frontiers in Psychology, 8(1969), 1–13.  https://doi.org/10.3389/fpsyg.2017.01969 CrossRefGoogle Scholar
  120. Seaman, K. L., Gorlick, M., Kruti, V., Hsu, M., Zald, D., & Samanez-Larkin, G. (2016). Adult age differences in decision making across domains: Increased discounting of social and health-related rewards. Psychology and Aging, 31(7), 737–746.  https://doi.org/10.1037/pag0000131
  121. Seaman, K. L., Brooks, N., Karrer, T. M., Castrellon, J. J., Perkins, S. F., Dang, L., … Samanez-Larkin, G. R. (2018). Subjective value representations during effort, probability, and time discounting across adulthood. Social Cognitive and Affective Neuroscience, 13, 449–459.  https://doi.org/10.1093/scan/nsy021
  122. Seaman, K. L., Smith, C. T., Juarez, E. J., Dang, L. C., Castrellon, J. J., & Samanez-Larkin, G. R. (2019). Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age. Human Brain Mapping.  https://doi.org/10.1002/hbm.24585
  123. Sescousse, G., Caldú, X., Segura, B., & Dreher, J.-C. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–96.  https://doi.org/10.1016/j.neubiorev.2013.02.002 CrossRefPubMedGoogle Scholar
  124. Sescousse, G., Li, Y., & Dreher, J. C. (2015). A common currency for the computation of motivational values in the human striatum. Social Cognitive and Affective Neuroscience, 10(4), 467–473.  https://doi.org/10.1093/scan/nsu074 CrossRefPubMedGoogle Scholar
  125. Smith, G. A., & Brewer, N. (1995). Slowness and Age: Speed-Accuracy Mechanisms. Psychology and Aging, 10(2), 238–247.  https://doi.org/10.1037/0882-7974.10.2.238 CrossRefPubMedGoogle Scholar
  126. Spaniol, J., Bowen, H. J., Wegier, P., & Grady, C. (2015). Neural responses to monetary incentives in younger and older adults. Brain Research, 1612, 70–82.  https://doi.org/10.1016/j.brainres.2014.09.063 CrossRefPubMedGoogle Scholar
  127. Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward-enhanced memory in younger and older adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 69(5), 730–740.  https://doi.org/10.1093/geronb/gbt044 CrossRefPubMedGoogle Scholar
  128. Spaniol, J., Voss, A., Bowen, H. J., & Grady, C. L. (2011). Motivational incentives modulate age differences in visual perception. Psychology and Aging, 26(4), 932–939.  https://doi.org/10.1037/a0023297 CrossRefPubMedGoogle Scholar
  129. Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging, 25(2), 377–390.  https://doi.org/10.1037/a0018022 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Strough, J., Bruin, W. B. de, & Peters, E. (2015). New perspectives for motivating better decisions in older adults. Frontiers in Psychology, 6(June), 1–10.  https://doi.org/10.3389/fpsyg.2015.00783 CrossRefGoogle Scholar
  131. Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, Massachusetts: MIT Press.Google Scholar
  132. Torchiano, M. (2018). effsize: Efficient Effect Size Computation, R package version 0.7.4.  https://doi.org/10.5281/zenodo.1480624
  133. Tymula, A., Belmaker, L. A. R., Ruderman, L., Glimcher, P. W., & Levy, I. (2013). Like cognitive function, decision making across the life span shows profound age-related changes. Proceedings of the National Academy of Sciences, 110(42), 17143–17148.  https://doi.org/10.1073/pnas.1517212112 CrossRefGoogle Scholar
  134. Urry, H. L., & Gross, J. J. (2010). Emotion Regulation in Older Age. Current Directions in Psychological Science, 19(6), 352–357.  https://doi.org/10.1177/0963721410388395 CrossRefGoogle Scholar
  135. Volkow, N. D., Gur, R. C., Wang, G.-J., Fowler, J. S., Moberg, P. J., Ding, Y.-S., … Logan, J. (1998). Association between declines in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal Of Psychiatry, 155(3), 344–349.  https://doi.org/10.1176/ajp.155.3.344 CrossRefPubMedGoogle Scholar
  136. Westbrook, A., & Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695–710.  https://doi.org/10.1016/j.neuron.2015.12.029 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Williams, Ryan S., Kudus, Farrah, Dyson, Benjamin J., & Spaniol, J. (2018). Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults. Cognitive Affective & Behavioral Neuroscience, 18, 313-30. Google Scholar
  138. Wu, C. C., Samanez-Larkin, G. R., Katovich, K., & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. NeuroImage, 84, 279–289.  https://doi.org/10.1016/j.neuroimage.2013.08.055 CrossRefPubMedGoogle Scholar
  139. Yee, D. M., & Braver, T. S. (2018). Interactions of motivation and cognitive control. Current Opinion in Behavioral Sciences, 19, 83–90.  https://doi.org/10.1016/j.cobeha.2017.11.009 CrossRefPubMedGoogle Scholar
  140. Yee, D. M., Krug, M. K., Allen, A., & Braver, T. S. (2016). Humans integrate monetary and liquid incentives to motivate cognitive task performance. Frontiers in Psychology, 6(January), 1–17.  https://doi.org/10.3389/fpsyg.2015.02037 CrossRefGoogle Scholar
  141. Zhu, X., Yin, S., Lang, M., He, R., & Li, J. (2016). The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Research Reviews, 31, 67–79.  https://doi.org/10.1016/j.arr.2016.07.003 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Cognitive Control and Psychopathology Laboratory, Psychological and Brain SciencesWashington University in St. LouisSt. LouisUSA

Personalised recommendations