Advertisement

Tracking the time course of letter visual-similarity effects during word recognition: A masked priming ERP investigation

  • Eva Gutiérrez-Sigut
  • Ana Marcet
  • Manuel PereaEmail author
Article

Abstract

Visual similarity effects during the early stages of word processing have been consistently found for letter-like digits and symbols. However, despite its relevance for models of word recognition, evidence for letter visual-similarity effects is scarce and restricted to behavioral experiments. In two masked priming experiments, we measured event-related potential (ERP) responses to words preceded by an identical (dentist-DENTIST), a visually similar (dentjst-DENTIST), or a visually dissimilar prime (dentgst-DENTIST) to track the time course of the effects of letter visual-similarity during word processing. In the 230- to 350-ms time window, the ERPs in the visual dissimilar condition showed larger negative-going amplitudes than in the visual similar condition, which in turn behaved like the identity condition. In a later time window (400-500 ms), the visually similar condition elicited larger negative-going amplitudes than the identity condition. This pattern of findings can be accommodated within those models of word recognition that assume uncertainty concerning letter identities early in word processing that is resolved over time.

Keywords

Word recognition Event-related potentials Lexical decision Masked priming 

Notes

References

  1. Bicknell, K., & Levy, R. (2010). A rational model of eye movement control in reading. In J. Hajič (Ed.), Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (pp.1168–1178). Uppsala, Sweden: Association for Computational Linguistics. doi: https://doi.org/10.1037/e520602012-979
  2. Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what, when, where, and how of visual word recognition. Trends in Cognitive Sciences, 18, 90–98. doi:  https://doi.org/10.1016/j.tics.2013.11.005 CrossRefGoogle Scholar
  3. Carreiras, M., Perea, M., Gil-López, C., Abu Mallouh, R., & Salillas, E. (2013). Neural correlates of visual vs. abstract letter processing in Roman and Arabic scripts. Journal of Cognitive Neuroscience, 25, 1975–1985. doi: https://doi.org/10.1162/jocn_a_00438 CrossRefGoogle Scholar
  4. Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117, 713–758. doi: https://doi.org/10.1037/a0019738 CrossRefGoogle Scholar
  5. Dehaene, S., & Cohen, L. (2007). Response to Carreiras et al: The role of visual similarity, feedforward, feedback and lateral pathways in reading. Trends in Cognitive Sciences, 11, 456–457. doi: https://doi.org/10.1016/j.tics.2007.08.009 CrossRefGoogle Scholar
  6. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: https://doi.org/10.1016/j.jneumeth.2003.10.009 CrossRefGoogle Scholar
  7. Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013). EsPal: One-stop shopping for Spanish word properties. Behavior Research Methods, 45, 1246–1258. doi: https://doi.org/10.3758/s13428-013-0326-1 CrossRefGoogle Scholar
  8. Duñabeitia, J. A., Perea, M., & Carreiras, M. (2009). Eye movements when reading words with $YMβOL$ and NUM83R5: There is a cost. Visual Cognition, 17, 617–631. doi: https://doi.org/10.1080/13506280902764489 CrossRefGoogle Scholar
  9. Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698. doi: https://doi.org/10.1037/0278-7393.10.4.680 Google Scholar
  10. Gomez, P., Perea, M., & Ratcliff, R. (2013). A diffusion model account of masked vs. unmasked priming: Are they qualitatively different? Journal of Experimental Psychology: Human Perception and Performance, 39, 1731-1740. doi: https://doi.org/10.1037/a0032333 Google Scholar
  11. Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. Psychological Review, 115, 577–600. doi: https://doi.org/10.1037/a0012667 CrossRefGoogle Scholar
  12. Grainger, J. (2008). Cracking the orthographic code: An introduction. Language and Cognitive Processes, 23, 1–35. doi: https://doi.org/10.1080/01690960701578013 CrossRefGoogle Scholar
  13. Grainger, J. (2018). Orthographic processing: A “mid-level” vision of reading. Quarterly Journal of Experimental Psychology, 71, 335–359. doi: https://doi.org/10.1080/17470218.2017.1314515 CrossRefGoogle Scholar
  14. Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3, 128–156. doi: https://doi.org/10.1111/j.1749-818x.2008.00121.x CrossRefGoogle Scholar
  15. Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20, 171–179. doi: https://doi.org/10.1016/j.tics.2015.12.008 CrossRefGoogle Scholar
  16. Gutiérrez-Sigut, E., Vergara-Martínez, M., & Perea, M. (2017). Early use of phonological codes in deaf readers: An ERP study. Neuropsychologia, 106, 261–279. doi: https://doi.org/10.1016/j.neuropsychologia.2017.10.006 CrossRefGoogle Scholar
  17. Holcomb, P. J., & Grainger, J. (2006). On the time course of visual word recognition: An event-related potential investigation using masked repetition priming. Journal of Cognitive Neuroscience, 18, 1631–1643. doi: https://doi.org/10.1162/jocn.2006.18.10.1631 CrossRefGoogle Scholar
  18. Kinoshita, S., Robidoux, S., Mills, L., & Norris, D. (2013). Visual similarity effects on masked priming. Memory & Cognition, 42, 821–833. doi: https://doi.org/10.3758/s13421-013-0388-4 CrossRefGoogle Scholar
  19. Kiyonaga, K., Grainger, J., Midgley, K., & Holcomb, P. J. (2007). Masked cross-modal repetition priming: An event-related potential investigation. Language and Cognitive Processes, 22, 337–376. doi: https://doi.org/10.1080/01690960600652471 CrossRefGoogle Scholar
  20. Laszlo, S., & Federmeier, K. D. (2014). Never seem to find the time: evaluating the physiological time course of visual word recognition with regression analysis of single-item event-related potentials. Language, Cognition and Neuroscience, 29, 642–661. doi: https://doi.org/10.1080/01690965.2013.866259 CrossRefGoogle Scholar
  21. Lien, M.-C., Allen, P., & Martin, N. (2014). Processing visual words with numbers: Electrophysiological evidence for semantic activation. Psychonomic Bulletin and Review, 21, 1056–1066. doi: https://doi.org/10.3758/s13423-014-0581-x CrossRefGoogle Scholar
  22. Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. doi: https://doi.org/10.3389/fnhum.2014.00213 CrossRefGoogle Scholar
  23. Lupker, S. J., Perea, M., & Davis, C. J. (2008). Transposed-letter effects: Consonants, vowels and letter frequency. Language and Cognitive Processes, 23, 93–116. doi: https://doi.org/10.1080/01690960701579714 CrossRefGoogle Scholar
  24. Madec, S., Rey, A., Dufau, S., Klein, M., & Grainger, J. (2012). The time course of visual letter perception. Journal of Cognitive Neuroscience, 24, 1645–1655. doi:  https://doi.org/10.1162/jocn_a_00178 CrossRefGoogle Scholar
  25. Marcet, A., & Perea, M. (2017). Is nevtral NEUTRAL? Visual similarity effects in the early phases of written-word recognition. Psychonomic Bulletin and Review, 24, 1180–1185. doi: https://doi.org/10.3758/s13423-016-1180-9 CrossRefGoogle Scholar
  26. Marcet, A., & Perea, M. (2018a). Can I order a burger at rnacdonalds.com? Visual similarity effects of multi-letter combinations at the early stages of word recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition. doi: https://doi.org/10.1037/xlm0000477
  27. Marcet, A., & Perea, M. (2018b). Visual letter similarity effects during sentence reading: Evidence from the boundary technique. Acta Psychologica, 190, 142–149. do:  https://doi.org/10.1016/j.actpsy.2018.08.007
  28. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375–407. doi: https://doi.org/10.1037/0033-295x.88.5.375 CrossRefGoogle Scholar
  29. Molinaro, N., Duñabeitia, J. A., Marìn-Gutiérrez, A., & Carreiras, M. (2010). From numbers to letters: Feedback regularization in visual word recognition. Neuropsychologia, 48, 1343–1355. doi: https://doi.org/10.1016/j.neuropsychologia.2009.12.037 CrossRefGoogle Scholar
  30. Mueller, S. T., & Weidemann, C. T. (2012). Alphabetic letter identification: Effects of perceivability, similarity, and bias. Acta Psychologica, 139, 19–37. doi: https://doi.org/10.1016/j.actpsy.2011.09.014 CrossRefGoogle Scholar
  31. Norris, D., & Kinoshita, S. (2012). Reading through a noisy channel: Why there's nothing special about the perception of orthography. Psychological Review, 119, 517-545. doi: https://doi.org/10.1037/a0028450 CrossRefGoogle Scholar
  32. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi: https://doi.org/10.1016/0028-3932(71)90067-4 CrossRefGoogle Scholar
  33. Perea, M., Duñabeitia, J. A., Pollatsek, A., & Carreiras, M. (2009). Does the brain regularize digits and letters to the same extent? Quarterly Journal of Experimental Psychology, 62, 1881–1888. doi: https://doi.org/10.1080/17470210902923374 CrossRefGoogle Scholar
  34. Perea, M., Duñabeitia, J.A., & Carreiras, M. (2008). R34D1NG W0RD5 W1TH NUMB3R5. Journal of Experimental Psychology: Human Perception and Performance, 34, 237–241. doi: https://doi.org/10.1037/0096-1523.34.1.237 Google Scholar
  35. Pollatsek, A., & Well, A. D. (1995). On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 785–794. doi: https://doi.org/10.1037/0278-7393.21.3.785 Google Scholar
  36. Rosa, E., Perea, M., & Enneson, P. (2016). The role of letter features in visual-word recognition: Evidence from a delayed segment technique. Acta Psychologica, 169, 133–142. doi: https://doi.org/10.1016/j.actpsy.2016.05.016 CrossRefGoogle Scholar
  37. Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62, 626–633. doi: https://doi.org/10.1080/01621459.1967.10482935 Google Scholar
  38. Simpson, I. C., Mousikou, P., Montoya, J. M., & Defior, S. (2012). A letter visual-similarity matrix for Latin-based alphabets. Behavior Research Methods, 45, 431–439. doi: https://doi.org/10.3758/s13428-012-0271-4 CrossRefGoogle Scholar
  39. Vergara-Martínez, M., Perea, M., Gomez, P., & Swaab, T.Y. (2013). ERP correlates of letter identity and letter position are modulated by lexical frequency. Brain and Language, 125, 11–27. doi: https://doi.org/10.1016/j.bandl.2012.12.009 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Eva Gutiérrez-Sigut
    • 1
    • 2
  • Ana Marcet
    • 1
  • Manuel Perea
    • 1
    • 3
    • 4
    Email author
  1. 1.Departamento de Metodología and ERI LecturaUniversitat de ValènciaValenciaSpain
  2. 2.UCL Deafness, Cognition & Language Research CentreUniversity College LondonLondonUK
  3. 3.BCBL, Basque Center on Cognition, Brain, and LanguageDonostiaSpain
  4. 4.Nebrija UniversityMadridSpain

Personalised recommendations