Advertisement

Inhibitory control mediates a negative relationship between body mass index and intelligence: A neurocognitive investigation

  • L. Faul
  • N. D. Fogleman
  • K. M. Mattingly
  • B. E. DepueEmail author
Article
  • 37 Downloads

Abstract

The structure and function of the human brain is closely related to cognitive processes of the mind and physiological processes of the body, suggesting that an intricate relationship exists between cognitive health, body health, and underlying neural architecture. In the current study, morphometric differences in cortical and subcortical gray matter regions, white matter integrity, and resting-state functional connectivity was assessed to determine what combinations of neural variables best explain an interconnected behavioral relationship between body mass index (BMI), general intelligence, and specific measures of executive function. Data for 82 subjects were obtained from the Nathan Kline Institute Rockland Sample. Behavioral results indicated a negative relationship between BMI and intelligence, which exhibited mediation by an inhibitory measure of executive function. Neural analyses further revealed generally contrasting associations of BMI, intelligence, and executive function with cortical morphometric regions important for inhibitory control and directed attention. Moreover, BMI related to morphometric alterations in components of a frontolimbic network, namely reduced thickness in the anterior cingulate cortex and ventromedial prefrontal cortex, whereas intelligence and inhibitory control primarily related to increased thickness and volume in parietal regions, as well as significantly increased across-network connectivity of visual and default mode resting-state networks. These results propose that medial prefrontal structure and interconnected frontolimbic and frontoparietal networks are important to consider in the relationship between BMI, intelligence, and executive function.

Keywords

Body mass index Intelligence Executive function Inhibitory control Morphometry Resting-state fMRI 

Notes

Supplementary material

13415_2019_695_MOESM1_ESM.docx (4.1 mb)
ESM 1 (DOCX 4157 kb)

References

  1. Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences.  https://doi.org/10.1111/j.1749-6632.2010.05445.x
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience.  https://doi.org/10.1146/annurev.neuro.9.1.357
  3. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007a). Non-linear registration, aka spatial normalisation. FMRIB Technial Report TR07JA2. Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, Oxford University, Oxford, UK.Google Scholar
  4. Andersson, J. L. R., Jenkinson, M., & Smith, S. M. (2007b). Non-linear optimisation. FMRIB technical report TR07JA1. Retrieved from http://fsl.fmrib.ox.ac.uk/analysis/techrep/tr07ja1/tr07ja1.pdf
  5. Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Meta-analysis, improving fluid intelligence with training on working memory. Psychonomic Bulletin & Review, 22, 366–377.  https://doi.org/10.1016/j.cognition.2008.05.007 CrossRefGoogle Scholar
  6. Ball, K., & Crawford, D. (2005). Socioeconomic status and weight change in adults: A review. Social Science and Medicine, 60(9), 1987–2010.  https://doi.org/10.1016/j.socscimed.2004.08.056 CrossRefPubMedGoogle Scholar
  7. Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(4), 1154–1164.  https://doi.org/10.1093/brain/aws021 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Batterink, L., Yokum, S., & Stice, E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. NeuroImage, 52(4), 1696–1703.  https://doi.org/10.1016/j.neuroimage.2010.05.059 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beckmann, C. F., & Smith, S. M. (2004). Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152.  https://doi.org/10.1109/TMI.2003.822821 CrossRefPubMedGoogle Scholar
  10. Beckmann, C., Mackay, C., Filippini, N., & Smith, S. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47, S148.  https://doi.org/10.1016/S1053-8119(09)71511-3 CrossRefGoogle Scholar
  11. Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 1165–1188.  https://doi.org/10.1214/aos/1013699998
  12. Birdsill, A. C., Oleson, S., Kaur, S., Pasha, E., Ireton, A., Tanaka, H., & Haley, A. (2017). Abdominal obesity and white matter microstructure in midlife. Human Brain Mapping.  https://doi.org/10.1002/hbm.23576
  13. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2004.10.003
  14. Boyle, C. P., Raji, C. A., Erickson, K. I., Lopez, O. L., Becker, J. T., Gach, H. M., … Thompson, P. M. (2015). Physical activity, body mass index, and brain atrophy in Alzheimer’s disease. Neurobiology of Aging, 36(S1), S194–S202.  https://doi.org/10.1016/j.neurobiolaging.2014.05.036 CrossRefPubMedGoogle Scholar
  15. Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290.  https://doi.org/10.1016/j.tics.2010.04.004 CrossRefPubMedGoogle Scholar
  16. Bush, G., Luu, P., & Posner, M. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.  https://doi.org/10.1016/S1364-6613(00)01483-2 CrossRefPubMedGoogle Scholar
  17. Camara, E., Rodriguez-Fornells, A., & Munte, T. F. (2010). Microstructural brain differences predict functional hemodynamic responses in a reward processing task. Journal of Neuroscience.  https://doi.org/10.1523/JNEUROSCI.0111-10.2010
  18. Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17(10), 493–501.  https://doi.org/10.1016/j.tics.2013.08.006 CrossRefPubMedGoogle Scholar
  19. Cohen, S., & Herbert, T. B. (1996). Health psychology: Psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annual Review of Psychology, 47, 113–142.  https://doi.org/10.1146/annurev.psych.47.1.113 CrossRefPubMedGoogle Scholar
  20. Cole, M. W., Ito, T., & Braver, T. S. (2015). Lateral prefrontal cortex contributes to fluid intelligence through multinetwork connectivity. Brain Connectivity, 5(8), 497–504.  https://doi.org/10.1089/brain.2015.0357 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348–1355.  https://doi.org/10.1038/nn.3470 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 8988–8999.  https://doi.org/10.1523/JNEUROSCI.0536-12.2012 CrossRefPubMedGoogle Scholar
  23. Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. Á., Shih, P. C., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37(2), 124–135.  https://doi.org/10.1016/j.intell.2008.07.007 CrossRefGoogle Scholar
  24. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences.  https://doi.org/10.1016/S0166-2236(02)02143-4
  25. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences.  https://doi.org/10.1016/j.tins.2007.06.011
  26. Cunningham, W. a., & Brosch, T. (2012). Motivational salience: Amygdala tuning from traits, needs, values, and goals. Current Directions in Psychological Science, 21(1), 54–59.  https://doi.org/10.1177/0963721411430832 CrossRefGoogle Scholar
  27. Cyders, M. A., & Smith, G. T. (2008). Emotion-based dispositions to rash action: Positive and negative urgency. Psychological Bulletin, 134(6), 807–828.  https://doi.org/10.1037/a0013341 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.  https://doi.org/10.1006/nimg.1998.0395 CrossRefPubMedGoogle Scholar
  29. Dale, A. M., & Sereno, M. I. (1993). Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5(2), 162–176.  https://doi.org/10.1162/jocn.1993.5.2.162 CrossRefPubMedGoogle Scholar
  30. Davis, C., Levitan, R. D., Muglia, P., Bewell, C., & Kennedy, J. L. (2004). Decision-making deficits and overeating: A risk model for obesity. Obesity Research, 12(6), 929–935.  https://doi.org/10.1038/oby.2004.113 CrossRefPubMedGoogle Scholar
  31. Delgado-Rico, E., Río-Valle, J. S., González-Jiménez, E., Campoy, C., & Verdejo-García, A. (2012). BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight. Obesity, 20(8), 1604–1610.  https://doi.org/10.1038/oby.2012.47 CrossRefPubMedGoogle Scholar
  32. Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan executive function system (D-KEFS). Canadian Journal of School Psychology, 20(1–2), 117–128.  https://doi.org/10.1177/0829573506295469 CrossRefGoogle Scholar
  33. Dempster, F. N. (1991). Inhibitory processes: A negleted dimension of intelligence. Intelligence, 15(2), 157–173.  https://doi.org/10.1016/0160-2896(91)90028-C CrossRefGoogle Scholar
  34. Depue, B. E., Orr, J. M., Smolker, H. R., Naaz, F., & Banich, M. T. (2016). The organization of right prefrontal networks reveals common mechanisms of inhibitory regulation across cognitive, emotional, and motor processes. Cerebral Cortex, 26(4), 1634–1646.  https://doi.org/10.1093/cercor/bhu324 CrossRefPubMedGoogle Scholar
  35. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.  https://doi.org/10.1016/j.neuroimage.2006.01.021 CrossRefPubMedGoogle Scholar
  36. Doucet, G. E., Rasgon, N., McEwen, B. S., Micali, N., & Frangou, S. (2017). Elevated body mass index is associated with increased integration and reduced cohesion of sensory-driven and internally guided resting-state functional brain networks. Cerebral Cortex, 1–10.  https://doi.org/10.1093/cercor/bhx008
  37. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the Amygdala. Neuron, 51(6), 871–882.  https://doi.org/10.1016/j.neuron.2006.07.029 CrossRefPubMedGoogle Scholar
  38. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., … Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Pnas, 106(17), 7209–7214.  https://doi.org/10.1073/pnas.0811879106 CrossRefPubMedGoogle Scholar
  39. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055.  https://doi.org/10.1073/pnas.200033797 CrossRefGoogle Scholar
  40. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80.  https://doi.org/10.1109/42.906426 CrossRefPubMedGoogle Scholar
  41. Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.  https://doi.org/10.1093/cercor/bhg087 CrossRefPubMedGoogle Scholar
  42. Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172–179.  https://doi.org/10.1111/j.1467-9280.2006.01681.x CrossRefPubMedGoogle Scholar
  43. Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905–923.  https://doi.org/10.1016/j.neuroimage.2006.09.046 CrossRefPubMedGoogle Scholar
  44. Gonzalez Andino, S. L., & Grave de Peralta Menendez, R. (2012). Coding of saliency by ensemble bursting in the amygdala of primates. Frontiers in Behavioral Neuroscience, 6.  https://doi.org/10.3389/fnbeh.2012.00038
  45. Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9(4), 24–29. ArticleGoogle Scholar
  46. Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180–190.  https://doi.org/10.1016/j.neuroimage.2014.05.052 CrossRefPubMedGoogle Scholar
  47. Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., Spitznagel, M. B., & Gordon, E. (2007). Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Comprehensive Psychiatry, 48(1), 57–61.  https://doi.org/10.1016/j.comppsych.2006.05.001 CrossRefPubMedGoogle Scholar
  48. Gunstad, J., Paul, R. H., Cohen, R. A, Tate, D. F., Spitznagel, M. B., Grieve, S., & Gordon, E. (2008). Relationship between body mass index and brain volume in healthy adults. The International Journal of Neuroscience, 118(11), 1582–1593.  https://doi.org/10.1080/00207450701392282 CrossRefPubMedGoogle Scholar
  49. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26.  https://doi.org/10.1038/npp.2009.129 CrossRefPubMedGoogle Scholar
  50. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23(1), 425–433.  https://doi.org/10.1016/j.neuroimage.2004.04.025 CrossRefPubMedGoogle Scholar
  51. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. NeuroImage, 25(1), 320–327.  https://doi.org/10.1016/j.neuroimage.2004.11.019 CrossRefPubMedGoogle Scholar
  52. Hamer, M., & Chida, Y. (2009). Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychological Medicine, 39(1), 3–11.  https://doi.org/10.1017/S0033291708003681 CrossRefPubMedGoogle Scholar
  53. Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419.  https://doi.org/10.1177/0956797613492984 CrossRefPubMedGoogle Scholar
  54. Hassenstab, J. J., Sweet, L. H., Del Parigi, A., McCaffery, J. M., Haley, A. P., Demos, K. E., … Wing, R. R. (2012). Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: a preliminary MRI study. Psychiatry Research, 202(1), 77–9.  https://doi.org/10.1016/j.pscychresns.2011.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hayes, A. (2013). Introduction to mediation, moderation, and conditional process analysis. New York, NY: Guilford, 3–4. doi:978-1-60918-230-4Google Scholar
  56. Heitz, R. P., Redick, T. S., Hambrick, D. Z., Kane, M. J., Conway, A. R. A., & Engle, R. W. (2006). Working memory, executive function, and general fluid intelligence are not the same. Behavioral and Brain Sciences, 29(2), 135–136.  https://doi.org/10.1017/S0140525X06319036 CrossRefGoogle Scholar
  57. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci., 9(1), 58–65.  https://doi.org/10.1038/nrn2298 CrossRefPubMedGoogle Scholar
  58. Hong, S., & Hikosaka, O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720–729.  https://doi.org/10.1016/j.neuron.2008.09.035 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hung, C.-S., Yang, C.-Y., Hsieh, H.-J., Wei, J.-N., Ma, W.-Y., & Li, H.-Y. (2012). BMI correlates better to visceral fat and insulin sensitivity than BAI. Obesity, 20(6), 1141–1141.  https://doi.org/10.1038/oby.2012.86 CrossRefPubMedGoogle Scholar
  60. Hunot, C., Fildes, A., Croker, H., Llewellyn, C. H., Wardle, J., & Beeken, R. J. (2016). Appetitive traits and relationships with BMI in adults: Development of the adult eating behaviour questionnaire. Appetite, 105, 356–363.  https://doi.org/10.1016/j.appet.2016.05.024 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833.  https://doi.org/10.1073/pnas.0801268105 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jasinska, A. J., Yasuda, M., Burant, C. F., Gregor, N., Khatri, S., Sweet, M., & Falk, E. B. (2012). Impulsivity and inhibitory control deficits are associated with unhealthy eating in young adults. Appetite, 59(3), 738–747.  https://doi.org/10.1016/j.appet.2012.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.  https://doi.org/10.1016/S1053-8119(02)91132-8 CrossRefPubMedGoogle Scholar
  64. Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., … Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. Journal of Neuroscience, 34(33), 10798–10807.  https://doi.org/10.1523/JNEUROSCI.0518-14.2014 CrossRefPubMedGoogle Scholar
  65. Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–54.  https://doi.org/10.1017/S0140525X07001185 CrossRefPubMedGoogle Scholar
  66. Kanazawa, S. (2014). Intelligence and obesity: which way does the causal direction go?. Current Opinion in Endocrinology, Diabetes, and Obesity, 21(5), 339–344.  https://doi.org/10.1097/MED.0000000000000091 CrossRefPubMedGoogle Scholar
  67. Karlsson, H. K., Tuulari, J. J., Hirvonen, J., Lepomäki, V., Parkkola, R., Hiltunen, J., … Nummenmaa, L. (2013). Obesity is associated with white matter atrophy: A combined diffusion tensor imaging and voxel-based morphometric study. Obesity, 21(12), 2530–2537.  https://doi.org/10.1002/oby.20386 CrossRefPubMedGoogle Scholar
  68. Kennedy, J. T., Collins, P. F., & Luciana, M. (2016). Higher adolescent body mass index is associated with lower regional gray and white matter volumes and lower levels of positive emotionality. Frontiers in Neuroscience.  https://doi.org/10.3389/fnins.2016.00413
  69. Kennerley, S. W., & Walton, M. E. (2011). Decision making and reward in frontal cortex: Complementary evidence from neurophysiological and neuropsychological studies. Behavioral Neuroscience, 125(3), 297–317.  https://doi.org/10.1037/a0023575 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Keys, A., Fidanza, F., Karvonen, M. J., Kimura, N., & Taylor, H. L. (1972). Indices of relative weight and obesity. Journal of Chronic Diseases, 25(6–7), 329–343.  https://doi.org/10.1016/0021-9681(72)90027-6 CrossRefPubMedGoogle Scholar
  71. Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635–643.  https://doi.org/10.1038/35007508 CrossRefPubMedGoogle Scholar
  72. Kopelman, P. G. (2007). Health risks associated with overweight and obesity. Obesity Reviews : An Official Journal of the International Association for the Study of Obesity, 8 Suppl 1(11), 13–17.  https://doi.org/10.1111/j.1467-789X.2007.00311.x CrossRefGoogle Scholar
  73. Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H. U., … Preissl, H. (2012). The obese brain: Association of body mass index and insulin sensitivity with resting state network functional connectivity. Human Brain Mapping, 33(5), 1052–1061.  https://doi.org/10.1002/hbm.21268 CrossRefPubMedGoogle Scholar
  74. Li, C.S., & Sinha, R. (2008). Inhibitory control and emotional stress regulation: Neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neuroscience and Biobehavioral Reviews.  https://doi.org/10.1016/j.neubiorev.2007.10.003
  75. Lips, M. A., Wijngaarden, M. A., Van Der Grond, J., Van Buchem, M. A., De Groot, G. H., Rombouts, S. A. R. B., … Veer, I. M. (2014). Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. American Journal of Clinical Nutrition, 100(2), 524–531.  https://doi.org/10.3945/ajcn.113.080671 CrossRefPubMedGoogle Scholar
  76. Marqués-Iturria, I., Pueyo, R., Garolera, M., Segura, B., Junqué, C., García-García, I., … Jurado, M. Á. (2013). Frontal cortical thinning and subcortical volume reductions in early adulthood obesity. Psychiatry Research - Neuroimaging, 214(2), 109–115.  https://doi.org/10.1016/j.pscychresns.2013.06.004 CrossRefGoogle Scholar
  77. McAdams, M. A., Van Dam, R. M., & Hu, F. B. (2007). Comparison of self-reported and measured BMI as correlates of disease markers in US adults. Obesity (Silver Spring, Md.), 15(1), 188–96.  https://doi.org/10.1038/oby.2007.504 CrossRefGoogle Scholar
  78. McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33(4), 337–346.  https://doi.org/10.1016/j.intell.2004.11.005 CrossRefGoogle Scholar
  79. Medic, N., Ziauddeen, H., Ersche, K. D., Farooqi, I. S., Bullmore, E. T., Nathan, P. J., … Fletcher, P. C. (2016). Increased body mass index is associated with specific regional alterations in brain structure. International Journal of Obesity (2005), 40(7), 1177–82.  https://doi.org/10.1038/ijo.2016.42 CrossRefGoogle Scholar
  80. Menary, K., Collins, P. F., Porter, J. N., Muetzel, R., Olson, E. A., Kumar, V., … Luciana, M. (2013). Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence, 41(5), 597–606.  https://doi.org/10.1016/j.intell.2013.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Mennes, M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2013). Making data sharing work: The FCP/INDI experience. NeuroImage, 82, 683–691.  https://doi.org/10.1016/j.neuroimage.2012.10.064 CrossRefPubMedGoogle Scholar
  82. Mokdad, A. H., Ford, E. S., Bowman, B. A., Dietz, W. H., Vinicor, F., Bales, V. S., & Marks, J. S. (2003). Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA, 289(1), 76–79.  https://doi.org/10.1001/jama.289.1.76 CrossRefPubMedGoogle Scholar
  83. Morey, R. A., Petty, C. M., Xu, Y., Pannu Hayes, J., Wagner, H. R., Lewis, D. V., … McCarthy, G. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45(3), 855–866.  https://doi.org/10.1016/j.neuroimage.2008.12.033 CrossRefPubMedGoogle Scholar
  84. Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2011.07.011
  85. Neisser, U., Boodoo, G., Bouchard Jr., T. J., Boykin, A W., Brody, N., Ceci, S. J., … Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51(2), 77–101.  https://doi.org/10.1037/0003-066X.51.2.77 CrossRefGoogle Scholar
  86. Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.  https://doi.org/10.1002/hbm.1058 CrossRefGoogle Scholar
  87. Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M., Moreno, A. L., … Milham, M. P. (2012). The NKI-Rockland sample: A model for accelerating the pace of discovery science in psychiatry. Frontiers in Neuroscience.  https://doi.org/10.3389/fnins.2012.00152
  88. Ozier, A. D., Kendrick, O. W., Leeper, J. D., Knol, L. L., Perko, M., & Burnham, J. (2008). Overweight and obesity are associated with emotion- and stress-related eating as measured by the eating and appraisal due to emotions and stress questionnaire. Journal of the American Dietetic Association, 108(1), 49–56.  https://doi.org/10.1016/j.jada.2007.10.011 CrossRefPubMedGoogle Scholar
  89. Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922.  https://doi.org/10.1016/j.neuroimage.2011.02.046 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Petrides, M., & Pandya, D. N. (2007). Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. Journal of Neuroscience, 27(43), 11573–11586.  https://doi.org/10.1523/JNEUROSCI.2419-07.2007 CrossRefPubMedGoogle Scholar
  91. Prentice, A M., & Jebb, S. A. (2001). Beyond body mass index. Obesity Reviews : An Official Journal of the International Association for the Study of Obesity, 2(3), 141–147.  https://doi.org/10.1046/j.1467-789x.2001.00031.x CrossRefGoogle Scholar
  92. Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277.  https://doi.org/10.1016/j.neuroimage.2015.02.064 CrossRefPubMedGoogle Scholar
  93. Raji, C. A., Ho, A. J., Parikshak, N. N., Becker, J. T., Lopez, O. L., Kuller, L. H., … Thompson, P. M. (2010). Brain structure and obesity. Human Brain Mapping, 31(3), 353–364.  https://doi.org/10.1002/hbm.20870 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4), 1181–1196.  https://doi.org/10.1016/j.neuroimage.2010.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2005.03.005
  96. Rozanski, A., Blumenthal, J. A., & Kaplan, J. (1999). Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation, 99, 2192–2217.  https://doi.org/10.1161/01.cir.99.16.2192 CrossRefPubMedGoogle Scholar
  97. Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712–721.  https://doi.org/10.1109/42.796284 CrossRefPubMedGoogle Scholar
  98. Ségonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3), 1060–1075.  https://doi.org/10.1016/j.neuroimage.2004.03.032 CrossRefPubMedGoogle Scholar
  99. Ségonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.  https://doi.org/10.1109/TMI.2006.887364 CrossRefPubMedGoogle Scholar
  100. Sirin, S. R. S. (2005). Socioeconomic status and academic achievement : A meta-analytic review of research. American Educational Research Association, 75(3), 417–453. Retrieved from http://rer.sagepub.com/content/75/3/417.short Google Scholar
  101. Sled, J. G., Zijdenbos, A P., & Evans, A C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.  https://doi.org/10.1109/42.668698 CrossRefPubMedGoogle Scholar
  102. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.  https://doi.org/10.1002/hbm.10062 CrossRefPubMedGoogle Scholar
  103. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024 CrossRefPubMedGoogle Scholar
  104. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(SUPPL. 1), S208–S219.  https://doi.org/10.1016/j.neuroimage.2004.07.051 CrossRefPubMedGoogle Scholar
  105. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.  https://doi.org/10.1016/j.neuroimage.2008.03.061 CrossRefPubMedGoogle Scholar
  106. Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. NeuroImage, 41(3), 1168–1176.  https://doi.org/10.1016/j.neuroimage.2008.02.036 CrossRefPubMedGoogle Scholar
  107. Spearman, C. (1904). " General Intelligence," Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201–292.  https://doi.org/10.2307/1412107 CrossRefGoogle Scholar
  108. Spielberg, J. M., Miller, G. A., Heller, W., & Banich, M. T. (2015). Flexible brain network reconfiguration supporting inhibitory control. Proceedings of the National Academy of Sciences, 112(32), 10020–10025.  https://doi.org/10.1073/pnas.1500048112 CrossRefGoogle Scholar
  109. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 12569–12574.  https://doi.org/10.1073/pnas.0800005105 CrossRefGoogle Scholar
  110. Stanek, K. M., Grieve, S. M., Brickman, A. M., Korgaonkar, M. S., Paul, R. H., Cohen, R. A, & Gunstad, J. J. (2011). Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity (Silver Spring, Md.), 19(3), 500–504.  https://doi.org/10.1038/oby.2010.312 CrossRefGoogle Scholar
  111. Stroop, J. R. (1935). Stroop color word test. Journal Experiment of Physiology, (18), 643–662.  https://doi.org/10.1007/978-0-387-79948-3 CrossRefGoogle Scholar
  112. Suchanek, P., Kralova Lesna, I., Mengerova, O., Mrazkova, J., Lanska, V., & Stavek, P. (2012). Which index best correlates with body fat mass: BAI, BMI, waist or WHR? Neuroendocrinology Letters (Vol. 33, pp. 78–82).PubMedGoogle Scholar
  113. Taki, Y., Kinomura, S., Sato, K., Inoue, K., Goto, R., Okada, K., … Fukuda, H. (2008). Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity, 16(16), 119–124.  https://doi.org/10.1038/oby.2007.4 CrossRefPubMedGoogle Scholar
  114. Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults’ participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34(12), 1996–2001.  https://doi.org/10.1097/00005768-200212000-00020 CrossRefPubMedGoogle Scholar
  115. Ursache, A., & Noble, K. G. (2016). Socioeconomic status, white matter, and executive function in children. Brain and Behavior, 6(10), 1–13.  https://doi.org/10.1002/brb3.531
  116. Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. NeuroImage, 103, 349–354.  https://doi.org/10.1016/j.neuroimage.2014.09.055 CrossRefPubMedGoogle Scholar
  117. Veit, R., Kullmann, S., Heni, M., Machann, J., Häring, H. U., Fritsche, A., & Preissl, H. (2014). Reduced cortical thickness associated with visceral fat and BMI. NeuroImage: Clinical, 6, 307–311.  https://doi.org/10.1016/j.nicl.2014.09.013 CrossRefGoogle Scholar
  118. Verstynen, T. D., Weinstein, A. M., Schneider, W. W., Jakicic, J. M., Rofey, D. L., & Erickson, K. I. (2012). Increased body mass index is associated with a global and distributed decrease in white matter microstructural integrity. Psychosomatic Medicine, 74(7), 682–690.  https://doi.org/10.1097/PSY.0b013e318261909c CrossRefPubMedPubMedCentralGoogle Scholar
  119. Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Goldstein, R. Z., Alia-Klein, N., … Pradhan, K. (2009). Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity, 17(1), 60–65.  https://doi.org/10.1038/oby.2008.469 CrossRefPubMedGoogle Scholar
  120. Walther, K., Birdsill, A. C., Glisky, E. L., & Ryan, L. (2010). Structural brain differences and cognitive functioning related to body mass index in older females. Human Brain Mapping, 31(7), 1052–1064.  https://doi.org/10.1002/hbm.20916 CrossRefPubMedGoogle Scholar
  121. Wang, F., Kalmar, J. H., He, Y., Jackowski, M., Chepenik, L. G., Edmiston, E. E., … Blumberg, H. P. (2009). Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biological Psychiatry, 66(5), 516–521.  https://doi.org/10.1016/j.biopsych.2009.03.023 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Wang, Y., & Beydoun, M. A. (2007). The obesity epidemic in the United States - Gender, age, socioeconomic, racial/ethnic, and geographic characteristics: A systematic review and meta-regression analysis. Epidemiologic Reviews, 29(1), 6–28.  https://doi.org/10.1093/epirev/mxm007 CrossRefPubMedGoogle Scholar
  123. Ward, M. A, Carlsson, C. M., Trivedi, M. A, Sager, M. A, & Johnson, S. C. (2005). The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurology, 5, 23.  https://doi.org/10.1186/1471-2377-5-23 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence--Second Edition. Wechsler Abbreviated Scale of Intelligence--Second Edition (WASI-II).Google Scholar
  125. WHO. (2000). Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization Technical Report Series, 894, 1–253.  https://doi.org/10.1016/S0140-6736(57)91352-1 CrossRefGoogle Scholar
  126. Wickett, J. C., Vernon, P. A, & Lee, D. H. (2000). Relationships between factors of intelligence and brain volume. Personality and Individual Differences, 29(6), 1095–1122.  https://doi.org/10.1016/S0191-8869(99)00258-5 CrossRefGoogle Scholar
  127. Willeumier, K. C., Taylor, D. V., & Amen, D. G. (2011). Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity, 19, 1095–1097.  https://doi.org/10.1038/oby.2011.16 CrossRefPubMedGoogle Scholar
  128. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397.  https://doi.org/10.1016/j.neuroimage.2014.01.060 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Witelson, S. F., Beresh, H., & Kigar, D. L. (2006). Intelligence and brain size in 100 postmortem brains: Sex, lateralization and age factors. Brain, 129(2), 386–398.  https://doi.org/10.1093/brain/awh696 CrossRefPubMedGoogle Scholar
  130. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., … Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1 Suppl).  https://doi.org/10.1016/j.neuroimage.2008.10.055
  131. Xu, J., Li, Y., Lin, H., Sinha, R., & Potenza, M. N. (2013). Body mass index correlates negatively with white matter integrity in the fornix and corpus callosum: A diffusion tensor imaging study. Human Brain Mapping, 34(5), 1044–1052.  https://doi.org/10.1002/hbm.21491 CrossRefPubMedGoogle Scholar
  132. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.  https://doi.org/10.1152/jn.00338.2011 CrossRefPubMedGoogle Scholar
  133. Yi, S.-W., Ohrr, H., Shin, S.-A., & Yi, J.-J. (2015). Sex-age-specific association of body mass index with all-cause mortality among 12.8 million Korean adults: a prospective cohort study. International Journal of Epidemiology, (July), 1–10.  https://doi.org/10.1093/ije/dyv138
  134. Yokum, S., Ng, J., & Stice, E. (2012). Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. International Journal of Obesity (2005), 36(5), 656–64.  https://doi.org/10.1038/ijo.2011.175 CrossRefGoogle Scholar
  135. Zelazo, P. D., & Cunningham, W. A. (2007). Executive function: mechanisms underlying emotion regulation. In Handbook of emotion regulation (pp. 135–158). Retrieved from http://psycnet.apa.org/psycinfo/2007-01392-007%5Cnpapers3://publication/uuid/28AE6820-F540-4881-AA55-A72276388A32

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • L. Faul
    • 1
  • N. D. Fogleman
    • 1
  • K. M. Mattingly
    • 1
  • B. E. Depue
    • 1
    • 2
    Email author
  1. 1.Department of Psychological and Brain SciencesUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations