Advertisement

Reward network connectivity “at rest” is associated with reward sensitivity in healthy adults: A resting-state fMRI study

  • Jesús Adrián-VenturaEmail author
  • Víctor Costumero
  • Maria Antònia Parcet
  • César Ávila
Special Issue/Reward Systems, Cognition,and Emotion

Abstract

The behavioral approach system (BAS), based on reinforcement sensitivity theory (RST), is a neurobehavioral system responsible for detecting and promoting motivated behaviors towards appetitive stimuli. Anatomically, the frontostriatal system has been proposed as the core of the BAS, mainly the ventral tegmental area and the ventral striatum and their dopaminergic connections with medial prefrontal structures. The RST also proposes the personality trait of reward sensitivity as a measurable construct of stable individual differences in BAS activity. However, the relationship between this trait and brain connectivity “at rest” has been poorly studied, mainly because previous investigations have focused on studying brain activity under reward-related contingency paradigms. Here, we analyzed the influence of reward sensitivity on the resting-state functional connectivity (rs-FC) between BAS-related areas by correlating the BOLD time series with the scores on the Sensitivity to Reward (SR) scale in a sample of 89 healthy young adults. Rs-FC between regions of interest were all significant. Results also revealed a positive association between SR scores and the rs-FC between the VTA and the ventromedial prefrontal cortex, and between the latter structure and the anterior cingulate cortex. These results suggest that reward sensitivity could be associated with different resting-state activity in the mesocortical pathway.

Keywords

Personality Reward Functional connectivity Basal ganglia Prefrontal cortex 

Notes

Acknowledgements

This work was supported by grants from Generalitat Valenciana (PROMETEO/2017/109) and Ministerio de Economía y Competitividad (PSI2016-78805-R) to C.A. In addition, this work was supported by a pre-doctoral graduate program grant (National FPU to J.A.-V.) and a post-doctoral graduate program grant (Juan de la Cierva to V.C.).

Supplementary material

13415_2019_688_MOESM1_ESM.docx (517 kb)
ESM 1 (DOCX 516 kb)

References

  1. Aarts, E., van Holstein, M., & Cools, R. (2011). Striatal dopamine and the interface between motivation and cognition. Frontiers in Psychology, 2, 163. doi: https://doi.org/10.3389/fpsyg.2011.00163 Google Scholar
  2. Aluja, A. (2004). Sensitivity to punishment, sensitivity to reward and sexuality in females. Personality and Individual Differences, 36(1), 5–10. doi: https://doi.org/10.1016/S0191-8869(02)00219-2 Google Scholar
  3. Angelides, N. H., Gupta, J., & Vickery, T. J. (2017). Associating resting-state connectivity with trait impulsivity. Social Cognitive and Affective Neuroscience, 12(6), 1001–1008. doi: https://doi.org/10.1093/scan/nsx031 Google Scholar
  4. Arias-Carrión, O., Stamelou, M., Murillo-Rodríguez, E., Menéndez-González, M., & Pöppel, E. (2010). Dopaminergic reward system: a short integrative review. International Archives of Medicine, 3, 24. doi: https://doi.org/10.1186/1755-7682-3-24 Google Scholar
  5. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi: https://doi.org/10.1016/J.NEUROIMAGE.2007.07.007 Google Scholar
  6. Avila, C. (1995). Facilitation and inhibition of visual orienting as a function of personality. Personality and Individual Differences, 18(4), 503–509. doi: https://doi.org/10.1016/0191-8869(94)00184-T Google Scholar
  7. Avila, C. (2001). Distinguishing BIS-mediated and BAS-mediated disinhibition mechanisms: a comparison of disinhibition models of Gray (1981, 1987) and of Patterson and Newman (1993). Journal of Personality and Social Psychology, 80(2), 311–324. doi: https://doi.org/10.1037/0022-3514.80.2.311 Google Scholar
  8. Avila, C., Barrós, A., Ortet, G., Antònia Parcet, M., & Ibañez, M. I. (2003). Set-shifting and sensitivity to reward: A possible dopamine mechanism for explaining disinhibitory disorders. Cognition & Emotion, 17(6), 951–959. doi: https://doi.org/10.1080/02699930302314 Google Scholar
  9. Avila, C., Garbin, G., Sanjuán, A., Forn, C., Barrós-Loscertales, A., Bustamante, J. C., … Parcet, M. A. (2012). Frontostriatal response to set switching is moderated by reward sensitivity. Social Cognitive and Affective Neuroscience, 7(4), 423–430. doi: https://doi.org/10.1093/scan/nsr028 Google Scholar
  10. Avila, C., Moltó, J., & Segarra, P. (1995). Sensitivity to conditioned or unconditioned stimuli: What is the mechanism underlying passive avoidance deficits in extraverts? Journal of Research in Personality, 29(4), 373–394. doi: https://doi.org/10.1006/JRPE.1995.1022 Google Scholar
  11. Avila, C., & Parcet, M. A. (1997). Impulsivity and anxiety differences in cognitive inhibition. Personality and Individual Differences, 23(6), 1055–1064. doi: https://doi.org/10.1016/S0191-8869(97)00124-4 Google Scholar
  12. Avila, C., & Parcet, M. A. (2000). The role of Gray’s impulsivity in anxiety-mediated differences in resistance to extinction. European Journal of Personality, 14(3), 185–198. doi: https://doi.org/10.1002/1099-0984(200005/06)14:3<185::AID-PER370>3.0.CO;2-U Google Scholar
  13. Ávila, C., & Parcet, M. A. (2002). Individual differences in reward sensitivity and attentional focus. Personality and Individual Differences, 33(6), 979–996. doi: https://doi.org/10.1016/S0191-8869(01)00207-0 Google Scholar
  14. Avila, C., Parcet, M. A., & Barrós-Loscertales, A. (2008). A cognitive neuroscience approach to individual differences in sensitivity to reward. Neurotoxicity Research, 14(2–3), 191–203. doi: https://doi.org/10.1007/BF03033810 Google Scholar
  15. Avila, C., Parcet, M. A., Ortet, G., & Ibáñez-Ribes, M. I. (1999). Anxiety and counter-conditioning: the role of the behavioral inhibition system in the ability to associate aversive stimuli with future rewards. Personality and Individual Differences, 27(6), 1167–1179. doi: https://doi.org/10.1016/S0191-8869(99)00060-4 Google Scholar
  16. Ávila, C., & Torrubia, R. (2004). Personality, expectations, and response strategies in multiple-choice question examinations in university students: a test of Gray’s hypotheses. European Journal of Personality, 18(1), 45–59. doi: https://doi.org/10.1002/per.506 Google Scholar
  17. Ávila, C., & Torrubia, R. (2008). Performance and conditioning studies. In P. J. Corr (Ed.), The reinforcement sensitivity theory of personality (pp. 228–260). New York: Cambridge University Press.Google Scholar
  18. Barrós-Loscertales, A., Meseguer, V., Sanjuán, A., Belloch, V., Parcet, M. A., Torrubia, R., & Avila, C. (2006). Striatum gray matter reduction in males with an overactive behavioral activation system. The European Journal of Neuroscience, 24(7), 2071–2074. doi: https://doi.org/10.1111/j.1460-9568.2006.05084.x Google Scholar
  19. Barrós-Loscertales, A., Ventura-Campos, N., Sanjuán-Tomás, A., Belloch, V., Parcet, M.-A., & Avila, C. (2010). Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing. Social Cognitive and Affective Neuroscience, 5(1), 18–28. doi: https://doi.org/10.1093/scan/nsq012 Google Scholar
  20. Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. The Journal of Neuroscience, 26(19), 5160–5166. doi: https://doi.org/10.1523/JNEUROSCI.0350-06.2006 Google Scholar
  21. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. doi: https://doi.org/10.2307/2346101 Google Scholar
  22. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “liking”, “wanting”, and learning. Current Opinion in Pharmacology, 9(1), 65–73. doi: https://doi.org/10.1016/j.coph.2008.12.014 Google Scholar
  23. Bijttebier, P., Beck, I., Claes, L., & Vandereycken, W. (2009). Gray’s Reinforcement Sensitivity Theory as a framework for research on personality-psychopathology associations. Clinical Psychology Review, 29(5), 421–430. doi: https://doi.org/10.1016/j.cpr.2009.04.002 Google Scholar
  24. Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541. doi: https://doi.org/10.1002/mrm.1910340409 Google Scholar
  25. Boog, M., Goudriaan, A. E., Wetering, B. J. M. V. D., Polak, M., Deuss, H., & Franken, I. H. A. (2014). Rash impulsiveness and reward sensitivity as predictors of treatment outcome in male substance dependent patients. Addictive Behaviors, 39(11), 1670–1675. doi: https://doi.org/10.1016/J.ADDBEH.2014.02.020 Google Scholar
  26. Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–834. doi: https://doi.org/10.1016/J.NEURON.2010.11.022 Google Scholar
  27. Bzdok, D., Langner, R., Schilbach, L., Engemann, D. A., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Segregation of the human medial prefrontal cortex in social cognition. Frontiers in Human Neuroscience, 7, 232. doi: https://doi.org/10.3389/fnhum.2013.00232 Google Scholar
  28. Carr, D. B., & Sesack, S. R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. The Journal of Neuroscience, 20(10), 3864–3873. doi: https://doi.org/10.1523/JNEUROSCI.20-10-03864.2000 Google Scholar
  29. Carter, R. M., Macinnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3, 21. doi: https://doi.org/10.3389/neuro.08.021.2009 Google Scholar
  30. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319–333. doi: https://doi.org/10.1037/0022-3514.67.2.319 Google Scholar
  31. Caseras, X., Àvila, C., & Torrubia, R. (2003). The measurement of individual differences in Behavioural Inhibition and Behavioural Activation Systems: a comparison of personality scales. Personality and Individual Differences, 34(6), 999–1013. doi: https://doi.org/10.1016/S0191-8869(02)00084-3 Google Scholar
  32. Cauda, F., Cavanna, A. E., D’agata, F., Sacco, K., Duca, S., & Geminiani, G. C. (2011). Functional connectivity and coactivation of the nucleus accumbens: A combined functional connectivity and structure-based meta-analysis. Journal of Cognitive Neuroscience, 23(10), 2864–2877. doi: https://doi.org/10.1162/jocn.2011.21624 Google Scholar
  33. Choi, E. Y., Yeo, B. T. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108(8), 2242–2263. doi: https://doi.org/10.1152/jn.00270.2012 Google Scholar
  34. Corr, P. J. (2004). Reinforcement sensitivity theory and personality. Neuroscience and Biobehavioral Reviews, 28(3), 317–332. doi: https://doi.org/10.1016/j.neubiorev.2004.01.005 Google Scholar
  35. Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., & Ávila, C. (2013a). Reward sensitivity modulates connectivity among reward brain areas during processing of anticipatory reward cues. The European Journal of Neuroscience, 38(3), 2399–2407. doi: https://doi.org/10.1111/ejn.12234 Google Scholar
  36. Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., Rosell-Negre, P., & Ávila, C. (2013b). Reward sensitivity is associated with brain activity during erotic stimulus processing. PloS One, 8(6), e66940. doi: https://doi.org/10.1371/journal.pone.0066940 Google Scholar
  37. Costumero, V., Barrós-Loscertales, A., Fuentes, P., Rosell-Negre, P., Bustamante, J. C., & Ávila, C. (2016). BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations. Brain Imaging and Behavior, 10(3), 869–879. doi: https://doi.org/10.1007/s11682-015-9466-5 Google Scholar
  38. D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319(5867), 1264–1267. doi: https://doi.org/10.1126/science.1150605 Google Scholar
  39. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22(3), 491–569. doi: https://doi.org/10.1017/S0140525X99002046 Google Scholar
  40. Derryberry, D., & Reed, M. A. (1994). Temperament and attention: Orienting toward and away from positive and negative signals. Journal of Personality and Social Psychology, 66(6), 1128–1139. doi: https://doi.org/10.1037/0022-3514.66.6.1128 Google Scholar
  41. Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Shehzad, Z., … Milham, M. P. (2008). Functional connectivity of human striatum: A resting state fMRI study. Cerebral Cortex, 18(12), 2735–2747. doi: https://doi.org/10.1093/cercor/bhn041 Google Scholar
  42. Düzel, E., Bunzeck, N., Guitart-Masip, M., Wittmann, B., Schott, B. H., & Tobler, P. N. (2009). Functional imaging of the human dopaminergic midbrain. Trends in Neurosciences, 32(6), 321–328. doi: https://doi.org/10.1016/J.TINS.2009.02.005 Google Scholar
  43. Fatahi, Z., Haghparast, A., Khani, A., & Kermani, M. (2018). Functional connectivity between anterior cingulate cortex and orbitofrontal cortex during value-based decision making. Neurobiology of Learning and Memory, 147, 74–78. doi: https://doi.org/10.1016/J.NLM.2017.11.014 Google Scholar
  44. Franken, I. H. A., & Muris, P. (2006). BIS/BAS personality characteristics and college students’ substance use. Personality and Individual Differences, 40(7), 1497–1503. doi: https://doi.org/10.1016/j.paid.2005.12.005 Google Scholar
  45. Franken, I. H. A., Muris, P., & Georgieva, I. (2006). Gray’s model of personality and addiction. Addictive Behaviors, 31(3), 399–403. doi: https://doi.org/10.1016/j.addbeh.2005.05.022 Google Scholar
  46. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355. doi: https://doi.org/10.1002/mrm.1910350312 Google Scholar
  47. Fuentes-Claramonte, P., Ávila, C., Rodríguez-Pujadas, A., Costumero, V., Ventura-Campos, N., Bustamante, J. C., … Barrós-Loscertales, A. (2016a). Characterizing individual differences in reward sensitivity from the brain networks involved in response inhibition. NeuroImage, 124(Pt A), 287–299. doi: https://doi.org/10.1016/j.neuroimage.2015.08.067 Google Scholar
  48. Fuentes-Claramonte, P., Ávila, C., Rodríguez-Pujadas, A., Costumero, V., Ventura-Campos, N., Bustamante, J. C., … Barrós-Loscertales, A. (2016b). Inferior frontal cortex activity is modulated by reward sensitivity and performance variability. Biological Psychology, 114, 127–137. doi: https://doi.org/10.1016/j.biopsycho.2016.01.001 Google Scholar
  49. Fuentes-Claramonte, P., Ávila, C., Rodríguez-Pujadas, A., Ventura-Campos, N., Bustamante, J. C., Costumero, V., … Barrós-Loscertales, A. (2015). Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching. PLoS One, 10(4), e0123073. doi: https://doi.org/10.1371/journal.pone.0123073 Google Scholar
  50. Fuentes, P., Barrós-Loscertales, A., Rodríguez-Pujadas, A., Ventura-Campos, N., Bustamante, J. C., Costumero, V., … Ávila, C. (2014a). Behavioral activation system modulation of brain activity during task switching. Personality and Individual Differences, 60, S52. doi: https://doi.org/10.1016/J.PAID.2013.07.212 Google Scholar
  51. Fuentes, P., Barrós-Loscertales, A., Rodríguez-Pujadas, A., Ventura-Campos, N., Bustamante, J. C., Costumero, V., … Ávila, C. (2014b). Reward sensitivity modulation of brain activity during response inhibition. Personality and Individual Differences, 60, S69. doi: https://doi.org/10.1016/J.PAID.2013.07.303 Google Scholar
  52. Glashouwer, K. A., Bloot, L., Veenstra, E. M., Franken, I. H. A., & de Jong, P. J. (2014). Heightened sensitivity to punishment and reward in anorexia nervosa. Appetite, 75, 97–102. doi: https://doi.org/10.1016/j.appet.2013.12.019 Google Scholar
  53. Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press.Google Scholar
  54. Gray, J. A., & McNaughton, N. J. (2000). The neuropsychology of anxiety: An inquiry into the functions of the septo-hippocampal system (2nd ed). Oxford: Oxford University Press.Google Scholar
  55. Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26. doi: https://doi.org/10.1038/npp.2009.129 Google Scholar
  56. Hahn, T., Dresler, T., Ehlis, A.-C., Plichta, M. M., Heinzel, S., Polak, T., … Fallgatter, A. J. (2009). Neural response to reward anticipation is modulated by Gray’s impulsivity. NeuroImage, 46(4), 1148–1153. doi: https://doi.org/10.1016/j.neuroimage.2009.03.038 Google Scholar
  57. Hayes, D. J., Duncan, N. W., Xu, J., & Northoff, G. (2014). A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neuroscience and Biobehavioral Reviews, 45, 350–368. doi: https://doi.org/10.1016/j.neubiorev.2014.06.018 Google Scholar
  58. Holmes, A. J., Hollinshead, M. O., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2016). Individual differences in cognitive control circuit anatomy link sensation seeking, impulsivity, and substance use. The Journal of Neuroscience, 36(14), 4038–4049. doi: https://doi.org/10.1523/JNEUROSCI.3206-15.2016 Google Scholar
  59. Kasch, K. L., Rottenberg, J., Arnow, B. A., & Gotlib, I. H. (2002). Behavioral activation and inhibition systems and the severity and course of depression. Journal of Abnormal Psychology, 111(4), 589–597. doi: https://doi.org/10.1037/0021-843X.111.4.589 Google Scholar
  60. Kennis, M., Rademaker, A. R., & Geuze, E. (2013). Neural correlates of personality: an integrative review. Neuroscience and Biobehavioral Reviews, 37(1), 73–95. doi: https://doi.org/10.1016/j.neubiorev.2012.10.012 Google Scholar
  61. Knyazev, G. G. (2004). Behavioural activation as predictor of substance use: mediating and moderating role of attitudes and social relationships. Drug and Alcohol Dependence, 75(3), 309–321. doi: https://doi.org/10.1016/j.drugalcdep.2004.03.007 Google Scholar
  62. Krebs, R. M., Schott, B. H., & Düzel, E. (2009). Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biological Psychiatry, 65(2), 103–110. doi: https://doi.org/10.1016/j.biopsych.2008.08.019 Google Scholar
  63. Lerner, D. A., Hatak, I., & Rauch, A. (2018). Deep roots? Behavioral Inhibition and Behavioral Activation System (BIS/BAS) sensitivity and entrepreneurship. Journal of Business Venturing Insights, 9, 107–115. doi: https://doi.org/10.1016/J.JBVI.2018.02.005 Google Scholar
  64. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cognitive, Affective & Behavioral Neuroscience, 8(1), 99–112. doi: https://doi.org/10.3758/CABN.8.1.99 Google Scholar
  65. Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations. NeuroImage, 7(2), 119–132. doi: https://doi.org/10.1006/NIMG.1997.0315 Google Scholar
  66. Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2007). Mapping the functional connectivity of anterior cingulate cortex. NeuroImage, 37(2), 579–588. doi: https://doi.org/10.1016/j.neuroimage.2007.05.019 Google Scholar
  67. Matton, A., Goossens, L., Braet, C., & Vervaet, M. (2013). Punishment and reward sensitivity: are naturally occurring clusters in these traits related to eating and weight problems in adolescents? European Eating Disorders Review, 21(3), 184–194. doi: https://doi.org/10.1002/erv.2226 Google Scholar
  68. Matton, A., Goossens, L., Vervaet, M., & Braet, C. (2015). Temperamental differences between adolescents and young adults with or without an eating disorder. Comprehensive Psychiatry, 56, 229–238. doi: https://doi.org/10.1016/J.COMPPSYCH.2014.09.005 Google Scholar
  69. McNaughton, N., & Corr, P. (2008). The neuropsychology of fear and anxiety: A foundation for reinforcement sensitivity theory. In P. J. Corr (Ed.), The reinforcement sensitivity theory of personality (pp. 44–94). Cambridge: Cambridge University Press.Google Scholar
  70. Mitchell, J. T., & Nelson-Gray, R. O. (2006). Attention-deficit/hyperactivity disorder symptoms in adults: Relationship to Gray’s behavioral approach system. Personality and Individual Differences, 40(4), 749–760. doi: https://doi.org/10.1016/j.paid.2005.08.011 Google Scholar
  71. Mortensen, J. A., Lehn, H., Evensmoen, H. R., & Håberg, A. K. (2015). Evidence for an antagonistic interaction between reward and punishment sensitivity on striatal activity: A verification of the Joint Subsystems Hypothesis. Personality and Individual Differences, 74, 214–219. doi: https://doi.org/10.1016/J.PAID.2014.10.023 Google Scholar
  72. Murty, V. P., Shermohammed, M., Smith, D. V., Carter, R. M., Huettel, S. A., & Adcock, R. A. (2014). Resting state networks distinguish human ventral tegmental area from substantia nigra. NeuroImage, 100, 580–589. doi: https://doi.org/10.1016/J.NEUROIMAGE.2014.06.047 Google Scholar
  73. Newman, J. P., MacCoon, D. G., Vaughn, L. J., & Sadeh, N. (2005). Validating a distinction between primary and secondary psychopathy with measures of Gray’s BIS and BAS constructs. Journal of Abnormal Psychology, 114(2), 319–323. doi: https://doi.org/10.1037/0021-843X.114.2.319 Google Scholar
  74. Newman, J. P., Widom, C. S., & Nathan, S. (1985). Passive avoidance in syndromes of disinhibition: psychopathy and extraversion. Journal of Personality and Social Psychology, 48(5), 1316–1327. doi: https://doi.org/10.1037/0022-3514.48.5.1316 Google Scholar
  75. Nostro, A. D., Müller, V. I., Varikuti, D. P., Pläschke, R. N., Hoffstaedter, F., Langner, R., … Eickhoff, S. B. (2018). Predicting personality from network-based resting-state functional connectivity. Brain Structure and Function, 223(6), 2699–2719. doi: https://doi.org/10.1007/s00429-018-1651-z Google Scholar
  76. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: https://doi.org/10.1016/0028-3932(71)90067-4 Google Scholar
  77. Pardo, Y., Aguilar, R., Molinuevo, B., & Torrubia, R. (2007). Alcohol use as a behavioural sign of disinhibition: evidence from J.A. Gray’s model of personality. Addictive Behaviors, 32(10), 2398–2403. doi: https://doi.org/10.1016/j.addbeh.2007.02.010
  78. Pastor, M. C., Ross, S. R., Segarra, P., Montañés, S., Poy, R., & Moltó, J. (2007). Behavioral inhibition and activation dimensions: Relationship to MMPI-2 indices of personality disorder. Personality and Individual Differences, 42(2), 235–245. doi: https://doi.org/10.1016/J.PAID.2006.06.015 Google Scholar
  79. Pickering, A. D., & Gray, J. A. (1999). The neuroscience of personality. In L. A. Pervin & O. P. John (Eds.), Handbook of personality: Theory and research (2nd edition) (pp. 277–299). New York: Guilford Press.Google Scholar
  80. Pickering, A. D., & Gray, J. A. (2001). Dopamine, appetitive reinforcement, and the neuropsychology of human learning: An individual differences approach. In A. Elias & A. Angleitner (Eds.), Advances in individual differences research (pp. 113–149). Lengerich: PABST Science Publishers.Google Scholar
  81. Pinto-Meza, A., Caseras, X., Soler, J., Puigdemont, D., Pérez, V., & Torrubia, R. (2006). Behavioural inhibition and behavioural activation systems in current and recovered major depression participants. Personality and Individual Differences, 40(2), 215–226. doi: https://doi.org/10.1016/j.paid.2005.06.021 Google Scholar
  82. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. doi: https://doi.org/10.1016/J.NEUROIMAGE.2011.10.018 Google Scholar
  83. Pujara, M. S., Philippi, C. L., Motzkin, J. C., Baskaya, M. K., & Koenigs, M. (2016). Ventromedial prefrontal cortex damage is associated with decreased ventral striatum volume and response to reward. The Journal of Neuroscience, 36(18), 5047–5054. doi: https://doi.org/10.1523/JNEUROSCI.4236-15.2016 Google Scholar
  84. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545–556. doi: https://doi.org/10.1038/nrn2357 Google Scholar
  85. Richard, J. M., & Berridge, K. C. (2013). Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption. Biological Psychiatry, 73(4), 360–370. doi: https://doi.org/10.1016/J.BIOPSYCH.2012.08.009 Google Scholar
  86. Richter, A., & Gruber, O. (2018). Influence of ventral tegmental area input on cortico-subcortical networks underlying action control and decision making. Human Brain Mapping, 39(2), 1004–1014. doi: https://doi.org/10.1002/hbm.23899 Google Scholar
  87. Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E., & Behrens, T. E. (2011). Frontal cortex and reward-guided learning and decision-making. Neuron, 70(6), 1054–1069. doi: https://doi.org/10.1016/J.NEURON.2011.05.014 Google Scholar
  88. Sesack, S. R., Carr, D. B., Omelchenko, N., & Pinto, A. (2003). Anatomical substrates for glutamate-dopamine interactions: Evidence for specificity of connections and extrasynaptic actions. Annals of the New York Academy of Sciences, 1003, 36–52. doi: https://doi.org/10.1196/annals.1300.066 Google Scholar
  89. Sescousse, G., Caldú, X., Segura, B., & Dreher, J.-C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–696. doi: https://doi.org/10.1016/j.neubiorev.2013.02.002 Google Scholar
  90. Simon, J. J., Walther, S., Fiebach, C. J., Friederich, H.-C., Stippich, C., Weisbrod, M., & Kaiser, S. (2010). Neural reward processing is modulated by approach- and avoidance-related personality traits. NeuroImage, 49(2), 1868–1874. doi: https://doi.org/10.1016/J.NEUROIMAGE.2009.09.016 Google Scholar
  91. Smith, K. S., & Graybiel, A. M. (2013). A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron, 79(2), 361–374. doi: https://doi.org/10.1016/J.NEURON.2013.05.038 Google Scholar
  92. Taylor, J., Reeves, M., James, L., & Bobadilla, L. (2006). Disinhibitory trait profile and its relation to Cluster B personality disorder features and substance use problems. European Journal of Personality, 20(4), 271–284. doi: https://doi.org/10.1002/per.585 Google Scholar
  93. Torrubia, R., Avila, C., & Caseras, X. (2008). Reinforcement sensitivity scales. In P. J. Corr (Ed.), The reinforcement sensitivity theory of personality (pp. 188–226). New York: Cambridge University Press.Google Scholar
  94. Torrubia, R., Ávila, C., Moltó, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personality and Individual Differences, 31(6), 837–862. doi: https://doi.org/10.1016/S0191-8869(00)00183-5 Google Scholar
  95. Tziortzi, A. C., Haber, S. N., Searle, G. E., Tsoumpas, C., Long, C. J., Shotbolt, P., … Gunn, R. N. (2014). Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography. Cerebral Cortex, 24(5), 1165–1177. doi: https://doi.org/10.1093/cercor/bhs397 Google Scholar
  96. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM Using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. doi: https://doi.org/10.1006/nimg.2001.0978 Google Scholar
  97. Vassena, E., Krebs, R. M., Silvetti, M., Fias, W., & Verguts, T. (2014). Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice. Neuropsychologia, 59, 112–123. doi: https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2014.04.019 Google Scholar
  98. Yan, C.-G., Craddock, R. C., He, Y., & Milham, M. P. (2013). Addressing head motion dependencies for small-world topologies in functional connectomics. Frontiers in Human Neuroscience, 7, 910. doi: https://doi.org/10.3389/fnhum.2013.00910 Google Scholar
  99. Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). DPABI: Data processing &amp; analysis for (Resting-State) brain imaging. Neuroinformatics, 14(3), 339–351. doi: https://doi.org/10.1007/s12021-016-9299-4 Google Scholar
  100. Yen, J.-Y., Cheng-Fang, Y., Chen, C.-S., Chang, Y.-H., Yeh, Y.-C., & Ko, C.-H. (2012). The bidirectional interactions between addiction, behaviour approach and behaviour inhibition systems among adolescents in a prospective study. Psychiatry Research, 200(2–3), 588–592. doi: https://doi.org/10.1016/J.PSYCHRES.2012.03.015 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Jesús Adrián-Ventura
    • 1
    Email author
  • Víctor Costumero
    • 1
    • 2
  • Maria Antònia Parcet
    • 1
  • César Ávila
    • 1
  1. 1.Department of Basic and Clinical Psychology and PsychobiologyJaume I UniversityCastellónSpain
  2. 2.Department of Methodology of the Behavioural SciencesUniversity of ValenciaValenciaSpain

Personalised recommendations