Cognitive, Affective, & Behavioral Neuroscience

, Volume 18, Issue 5, pp 1049–1063 | Cite as

Ocular signatures of proactive versus reactive cognitive control in young adults

  • Verónica Mäki-MarttunenEmail author
  • Thomas Hagen
  • Samira Aminihajibashi
  • Maja Foldal
  • Maria Stavrinou
  • Jens H. Halvorsen
  • Bruno Laeng
  • Thomas Espeseth


During the execution of a cognitive task, the brain maintains contextual information to guide behavior and achieve desired goals. The AX-Continuous Performance Task is used to study proactive versus reactive cognitive control. Young adults tend to behave proactively in standard testing conditions. However, it remains unclear how interindividual variability (e.g., in cognitive and motivational factors) may drive people into more reactive or proactive control under the same task demands. We investigated the use of control strategies in a large population of healthy young adults. We computed the proactive behavioral index and consequently divided participants into proactive, reactive, and intermediate groups. We found that reactive participants were generally slower, presented lower context sensitivity, and larger response variability. Pupillary changes and blink rate index cognitive effort allocation. We measured, concomitantly to the task, the pupil size and frequency of blinks associated with the cue maintenance and response intervals. During the cue period, nonfrequent, nontarget cues led to increased pupil dilation and number of blinks in all participants. During the response interval, we found more errors and increased pupil dilation to the probe when all participants had to overcome a response bias generated by the frequent cue. Only reactive participants showed larger response-related pupil when they had to overcome a response bias related to the frequent probe. Contrary to expectations, groups did not differ in ocular measures in the cue period. In conclusion, interindividual differences in cognitive control between healthy adults can be mapped onto different patterns of effort allocation indexed by the pupil.


Pupillometry Eye blinks Cognitive control AX-CPT 

Supplementary material

13415_2018_621_MOESM1_ESM.docx (956 kb)
ESM 1 (DOCX 956 kb)


  1. Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of vision, 14(4), 1-1.CrossRefPubMedGoogle Scholar
  2. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in cognitive sciences, 18(4), 177-185.CrossRefPubMedGoogle Scholar
  3. Aston-Jones, G., & Cohen, J. D. (2005a). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.CrossRefPubMedGoogle Scholar
  4. Aston-Jones, G., & Cohen, J. D. (2005b). Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance. Journal of Comparative Neurology, 493(1), 99-110.CrossRefPubMedGoogle Scholar
  5. Aston-Jones, G., Foote, S., & Segal, M. (1985). Impulse conduction properties of noradrenergic locus coeruleus axons projecting to monkey cerebrocortex. Neuroscience, 15(3), 765-777.CrossRefPubMedGoogle Scholar
  6. Bacher, L. F., Retz, S., Lindon, C., & Bell, M. A. (2017). Intraindividual and interindividual differences in spontaneous eye blinking: relationships to working memory performance and frontal EEG asymmetry. Infancy, 22(2), 150-170.CrossRefPubMedGoogle Scholar
  7. Badre, D., & Nee, D. E. (2017). Frontal cortex and the hierarchical control of behavior. Trends in cognitive sciences.Google Scholar
  8. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological bulletin, 91(2), 276.CrossRefPubMedGoogle Scholar
  9. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. Handbook of psychophysiology, 2, 142-162.Google Scholar
  10. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33-84.CrossRefPubMedGoogle Scholar
  11. Bijleveld, E., Custers, R., & Aarts, H. (2009). The unconscious eye opener: Pupil dilation reveals strategic recruitment of resources upon presentation of subliminal reward cues. Psychological Science, 20(11), 1313-1315.CrossRefPubMedGoogle Scholar
  12. Bonneh, Y., Adini, Y., & Polat, U. (2016). Contrast sensitivity revealed by spontaneous eyeblinks: Evidence for a common mechanism of oculomotor inhibition. Journal of Visualized 16(7):1.Google Scholar
  13. Braver, T. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in cognitive sciences, 16, 106-113.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Braver, T., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., … Mumenthaler, M. S. (2001). Context processing in older adults: evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746.CrossRefGoogle Scholar
  15. Braver, T. S., & Barch, D. M. (2006). Extracting core components of cognitive control. Trends in cognitive sciences, 10(12), 529-532.CrossRefPubMedGoogle Scholar
  16. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. Control of cognitive processes: Attention and performance XVIII, 713-737.Google Scholar
  17. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106, 7351-7356.Google Scholar
  18. Brown, G. G., Kindermann, S. S., Siegle, G. J., Granholm, E., Wong, E. C., & Buxton, R. B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society, 5(4), 308-319.CrossRefPubMedGoogle Scholar
  19. Bugg, J. M. (2014). Evidence for the sparing of reactive cognitive control with age. Psychology and Aging, 29, 115.CrossRefPubMedGoogle Scholar
  20. Burgess, G. C., & Braver, T. S. (2010). Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence. PloS one, 5(9), e12861.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences, 106, 5529-5533.Google Scholar
  22. Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontiers in psychology, 4.Google Scholar
  23. Chiew, K. S., & Braver, T. S. (2014). Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 509-529.CrossRefGoogle Scholar
  24. Cohen, J. D., Botvinick, M., & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex: who's in control? Nature neuroscience, 3(5), 421-423.CrossRefPubMedGoogle Scholar
  25. Colzato, L. S., van den Wildenberg, W. P., van Wouwe, N. C., Pannebakker, M. M., & Hommel, B. (2009). Dopamine and inhibitory action control: evidence from spontaneous eye blink rates. Experimental brain research, 196(3), 467-474.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cooper, S. R., Gonthier, C., Barch, D. M., & Braver, T. S. (2017). The Role of Psychometrics in Individual Differences Research in Cognition: A Case Study of the AX-CPT. Frontiers in psychology, 8(1482). doi:
  27. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306-324.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Czernochowski, D. (2015). ERPs dissociate proactive and reactive control: Evidence from a task-switching paradigm with informative and uninformative cues. Cognitive, Affective, & Behavioral Neuroscience, 15(1), 117-131.CrossRefGoogle Scholar
  29. D’Ardenne, K., Eshel, N., Luka, J., Lenartowicz, A., Nystrom, L. E., & Cohen, J. D. (2012). Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of Sciences, 109, 19900-19909.Google Scholar
  30. Eckstein, M. K., Guerra-Carrillo, B., Singley, A. T. M., & Bunge, S. A. (2017). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Developmental cognitive neuroscience, 25, 69-91.CrossRefPubMedGoogle Scholar
  31. Edwards, B. G., Barch, D. M., & Braver, T. S. (2010). Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 4.Google Scholar
  32. Elsworth, J. D., Lawrence, M. S., Roth, R. H., Taylor, J. R., Mailman, R. B., Nichols, D. E., … Redmond, D. E. (1991). D1 and D2 dopamine receptors independently regulate spontaneous blink rate in the vervet monkey. Journal of Pharmacology and Experimental Therapeutics, 259(2), 595-600.PubMedGoogle Scholar
  33. Farzin, F., Scaggs, F., Hervey, C., Berry-Kravis, E., & Hessl, D. (2011). Reliability of eye tracking and pupillometry measures in individuals with fragile X syndrome. Journal of autism and developmental disorders, 41(11), 1515-1522.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Foote, S. L., Freedman, R., & Oliver, A. P. (1975). Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain research, 86(2), 229-242.CrossRefPubMedGoogle Scholar
  35. Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 137-160.CrossRefGoogle Scholar
  36. Groman, S. M., James, A. S., Seu, E., Tran, S., Clark, T. A., Harpster, S. N., … Roth, R. H. (2014). In the blink of an eye: relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate. Journal of Neuroscience, 34(43), 14443-14454.CrossRefPubMedGoogle Scholar
  37. Haarmann, H. J., Ashling, G. E., Davelaar, E. J., & Usher, M. (2005). Age-related declines in context maintenance and semantic short-term memory. The Quarterly Journal of Experimental Psychology Section A, 58(1), 34-53.CrossRefGoogle Scholar
  38. Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working memory capacity: Behavioral and pupillometric data. Psychophysiology, 45(1), 119-129.PubMedGoogle Scholar
  39. Irlbacher, K., Kraft, A., Kehrer, S., & Brandt, S. A. (2014). Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory. Neuroscience & Biobehavioral Reviews, 46, 58-70.CrossRefGoogle Scholar
  40. Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234.CrossRefPubMedGoogle Scholar
  41. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 1583-1585.CrossRefPubMedGoogle Scholar
  42. Kang, O. E., Huffer, K. E., & Wheatley, T. P. (2014). Pupil dilation dynamics track attention to high-level information. PloS one, 9(8), e102463.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106(3), 643-653.CrossRefPubMedGoogle Scholar
  44. Kihara, K., Takeuchi, T., Yoshimoto, S., Kondo, H. M., & Kawahara, J. I. (2015). Pupillometric evidence for the locus coeruleus-noradrenaline system facilitating attentional processing of action-triggered visual stimuli. Frontiers in psychology, 6.Google Scholar
  45. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181-1185.CrossRefPubMedGoogle Scholar
  46. Krug, M. K., & Carter, C. S. (2012). Proactive and reactive control during emotional interference and its relationship to trait anxiety. Brain research, 1481, 13-36.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary stroop effects. Cognitive processing, 12(1), 13-21.CrossRefPubMedGoogle Scholar
  48. Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: a window to the preconscious? Perspectives on psychological science, 7(1), 18-27.CrossRefPubMedGoogle Scholar
  49. Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., … Carter, C. S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage: Clinical, 2, 590-599.CrossRefGoogle Scholar
  50. Lopez-Garcia, P., Lesh, T. A., Salo, T., Barch, D. M., MacDonald III, A. W., Gold, J. M., … Carter, C. S. (2016). The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Cognitive, affective & behavioral neuroscience, 16, 164.CrossRefGoogle Scholar
  51. Lorsbach, T. C., & Reimer, J. F. (2008). Context processing and cognitive control in children and young adults. The Journal of genetic psychology, 169(1), 34-50.CrossRefPubMedGoogle Scholar
  52. Lositsky, O., Wilson, R. C., Shvartsman, M., & Cohen, J. D. (2015). A Drift Diffusion Model of Proactive and Reactive Control in a Context-Dependent Two-Alternative Forced Choice Task. Paper presented at the The Multi-disciplinary Conference on Reinforcement Learning and Decision Making.Google Scholar
  53. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 167-202.CrossRefPubMedGoogle Scholar
  54. Nee, D. E., & Brown, J. W. (2012). Dissociable frontal–striatal and frontal–parietal networks involved in updating hierarchical contexts in working memory. Cerebral cortex, 23(9), 2146-2158.CrossRefPubMedGoogle Scholar
  55. Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2007). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral cortex, 18, 1010-1028.CrossRefPubMedGoogle Scholar
  56. Rac-Lubashevsky, R., Slagter, H. A., & Kessler, Y. (2017). Tracking real-time changes in working memory updating and gating with the event-based eye-blink rate. Scientific reports, 7(1), 2547.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rajkowski, J., Lu, W., Zhu, Y., Cohen, J. D., & Aston-Jones, G. (2000). Prominent projections from the anterior cingulate cortex to the locus coeruleus in Rhesus monkey. Paper presented at the Soc. Neurosci. Abstr.Google Scholar
  58. Redick, T. S., & Engle, R. W. (2011). Integrating working memory capacity and context-processing views of cognitive control. The Quarterly Journal of Experimental Psychology, 64(6), 1048-1055.CrossRefPubMedGoogle Scholar
  59. Richmond, L. L., Redick, T. S., & Braver, T. S. (2015). Remembering to prepare: The benefits (and costs) of high working memory capacity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1764.PubMedGoogle Scholar
  60. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447.CrossRefPubMedGoogle Scholar
  61. Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome Jr, E. D., & Beck, L. H. (1956). A continuous performance test of brain damage. Journal of consulting psychology, 20(5), 343.CrossRefPubMedGoogle Scholar
  62. Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O'Reilly, R. C. (2005). Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7338-7343.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rush, B. K., Barch, D. M., & Braver, T. S. (2006). Accounting for cognitive aging: context processing, inhibition or processing speed? Aging, Neuropsychology, and Cognition, 13(3-4), 588-610.CrossRefGoogle Scholar
  64. Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 76, 130-141.CrossRefPubMedGoogle Scholar
  65. Satterthwaite, T. D., Ruparel, K., Loughead, J., Elliott, M. A., Gerraty, R. T., Calkins, M. E., … Wolf, D. H. (2012). Being right is its own reward: Load and performance related ventral striatum activation to correct responses during a working memory task in youth. Neuroimage, 61(3), 723-729.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Savine, A. C., Beck, S. M., Edwards, B. G., Chiew, K. S., & Braver, T. S. (2010). Enhancement of cognitive control by approach and avoidance motivational states. Cognition and Emotion, 24(2), 338-356.CrossRefPubMedGoogle Scholar
  67. Siegle, G. J., Ichikawa, N., & Steinhauer, S. (2008). Blink before and after you think: blinks occur prior to and following cognitive load indexed by pupillary responses. Psychophysiology, 45(5), 679-687.CrossRefPubMedGoogle Scholar
  68. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior research methods, instruments, & computers, 31(1), 137-149.CrossRefGoogle Scholar
  69. Staub, B., Doignon-Camus, N., Bacon, É., & Bonnefond, A. (2014). Age-related differences in the recruitment of proactive and reactive control in a situation of sustained attention. Biological psychology, 103, 38-47.CrossRefPubMedGoogle Scholar
  70. Stern, J. A., Walrath, L. C., & Goldstein, R. (1984). The endogenous eyeblink. Psychophysiology, 21(1), 22-33.CrossRefPubMedGoogle Scholar
  71. Taylor, J., Elsworth, J., Lawrence, M., Sladek Jr, J., Roth, R., & Redmond Jr, D. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Experimental neurology, 158(1), 214-220.CrossRefPubMedGoogle Scholar
  72. Tharp, I. J., & Pickering, A. D. (2011). Individual differences in cognitive-flexibility: The influence of spontaneous eyeblink rate, trait psychoticism and working memory on attentional set-shifting. Brain and cognition, 75(2), 119-125.CrossRefPubMedGoogle Scholar
  73. Unsworth, N., & Robison, M. K. (2017). The Importance of Arousal for Variation in Working Memory Capacity and Attention Control: A Latent Variable Pupillometry Study.Google Scholar
  74. Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549-554.CrossRefPubMedGoogle Scholar
  75. van Bochove, M. E., Van der Haegen, L., Notebaert, W., & Verguts, T. (2013). Blinking predicts enhanced cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13(2), 346-354.CrossRefGoogle Scholar
  76. Van Der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., … Wartenburger, I. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47(1), 158-169.CrossRefPubMedGoogle Scholar
  77. Van Gerven, P. W., Hurks, P. P., Bovend'Eerdt, T. J., & Adam, J. J. (2016). Switch hands! Mapping proactive and reactive cognitive control across the life span. Developmental psychology, 52(6), 960.CrossRefPubMedGoogle Scholar
  78. Van Steenbergen, H., & Band, G. P. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7.Google Scholar
  79. van Wouwe, N. C., Band, G. P., & Ridderinkhof, K. R. (2009). Proactive control and episodic binding in context processing effects. Acta psychologica, 131(3), 245-253.CrossRefPubMedGoogle Scholar
  80. Wascher, E., Heppner, H., Möckel, T., Kobald, S. O., & Getzmann, S. (2015). Eye-blinks in choice response tasks uncover hidden aspects of information processing. EXCLI journal, 14, 1207.PubMedPubMedCentralGoogle Scholar
  81. Waterhouse, B. D., & Woodward, D. J. (1980). Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Experimental neurology, 67(1), 11-34.CrossRefPubMedGoogle Scholar
  82. Werchan, D. M., Collins, A. G., Frank, M. J., & Amso, D. (2015). 8-month-old infants spontaneously learn and generalize hierarchical rules. Psychological Science, 26(6), 805-815.CrossRefPubMedPubMedCentralGoogle Scholar
  83. West, R., & Schwarb, H. (2006). The influence of aging and frontal function on the neural correlates of regulative and evaluative aspects of cognitive control. Neuropsychology, 20(4), 468.CrossRefPubMedGoogle Scholar
  84. Westbrook, A., & Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695-710.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wolf, R. C., Walter, H., & Vasic, N. (2010). Increasing contextual demand modulates anterior and lateral prefrontal brain regions associated with proactive interference. International Journal of Neuroscience, 120(1), 40-50.CrossRefPubMedGoogle Scholar
  86. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: a mind-brain perspective. Psychological bulletin, 133(2), 273.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Verónica Mäki-Marttunen
    • 1
    Email author
  • Thomas Hagen
    • 1
  • Samira Aminihajibashi
    • 1
  • Maja Foldal
    • 1
  • Maria Stavrinou
    • 1
  • Jens H. Halvorsen
    • 1
  • Bruno Laeng
    • 1
  • Thomas Espeseth
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of OsloOsloNorway
  2. 2.Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and AddictionOslo University HospitalOsloNorway

Personalised recommendations