Advertisement

Seeing minds in others: Mind perception modulates low-level social-cognitive performance and relates to ventromedial prefrontal structures

  • Eva Wiese
  • George A. Buzzell
  • Abdulaziz Abubshait
  • Paul J. Beatty
Article

Abstract

In social interactions, we rely on nonverbal cues like gaze direction to understand the behavior of others. How we react to these cues is affected by whether they are believed to originate from an entity with a mind, capable of having internal states (i.e., mind perception). While prior work has established a set of neural regions linked to social-cognitive processes like mind perception, the degree to which activation within this network relates to performance in subsequent social-cognitive tasks remains unclear. In the current study, participants performed a mind perception task (i.e., judging the likelihood that faces, varying in physical human-likeness, have internal states) while event-related fMRI was collected. Afterwards, participants performed a social attention task outside the scanner, during which they were cued by the gaze of the same faces that they previously judged within the mind perception task. Parametric analyses of the fMRI data revealed that activity within ventromedial prefrontal cortex (vmPFC) was related to both mind ratings inside the scanner and gaze-cueing performance outside the scanner. In addition, other social brain regions were related to gaze-cueing performance, including frontal areas like the left insula, dorsolateral prefrontal cortex, and inferior frontal gyrus, as well as temporal areas like the left temporo-parietal junction and bilateral temporal gyri. The findings suggest that functions subserved by the vmPFC are relevant to both mind perception and social attention, implicating a role of vmPFC in the top-down modulation of low-level social-cognitive processes.

Keywords

Mind perception gaze following social interaction fMRI medial-frontal cortex TPJ 

Notes

Acknowledgements

We would like to dedicate this paper to the late Raja Parasuraman, who provided insight into the design and implementation of this study.

Funding

This work was supported by the Air Force Office of Scientific Research, Grant Number FA9550-10-1-0385, the Center of Excellence in Neuroergonomics, Technology, and Cognition. The authors declare no competing financial interests.

Supplementary material

13415_2018_608_MOESM1_ESM.pdf (17 kb)
Table S1 (PDF 17.1 kb)

References

  1. Abell, F., Happé, F., & Frith, U. (2000). Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. Cognitive Development, 15(1), 1–16.  https://doi.org/10.1016/S0885-2014(00)00014-9 CrossRefGoogle Scholar
  2. Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693–716.  https://doi.org/10.1146/annurev.psych.60.110707.163514 PubMedCentralPubMedGoogle Scholar
  3. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277.PubMedGoogle Scholar
  4. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2(11), 1032–1037.  https://doi.org/10.1038/14833 PubMedGoogle Scholar
  5. Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind. Cambridge, MA: MIT Press.Google Scholar
  6. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind” ? Cognition, 21(1), 37–46. doi:10.1016/0010-0277(85)90022-8Google Scholar
  7. Bartneck, C. (2003). Interacting with an embodied emotional character. In Proceedings of the 2003 International Conference on Designing Pleasurable Products and Interfaces (pp. 55–60). New York, NY: ACM.  https://doi.org/10.1145/782896.782911
  8. Becchio, C., Adenzato, M., & Bara, B. G. (2006). How the brain understands intention: Different neural circuits identify the componential features of motor and prior intentions. Consciousness and Cognition, 15(1), 64–74.  https://doi.org/10.1016/j.concog.2005.03.006 PubMedGoogle Scholar
  9. Beer, J. S., Heerey, E. A., Keltner, D., Scabini, D., & Knight, R. T. (2003). The regulatory function of self-conscious emotion: Insights from patients with orbitofrontal damage. Journal of Personality and Social Psychology, 85(4), 594–604.  https://doi.org/10.1037/0022-3514.85.4.594 PubMedGoogle Scholar
  10. Bennewitz, M., Faber, F., Joho, D., Schreiber, M., & Behnke, S. (2005). Towards a humanoid museum guide robot that interacts with multiple persons. In 5th IEEE-RAS International Conference on Humanoid Robots, 2005, (pp. 418–423).  https://doi.org/10.1109/ICHR.2005.1573603
  11. Bering, J., & Johnson, D. (2005). “O lord you perceive my thoughts from afar”: Recursiveness and the evolution of supernatural agency. Journal of Cognition and Culture, 5, 118–142.  https://doi.org/10.1163/1568537054068679 CrossRefGoogle Scholar
  12. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex (New York, NY), 19(12), 2767–2796.  https://doi.org/10.1093/cercor/bhp055 PubMedCentralGoogle Scholar
  13. Bisio, A., Sciutti, A., Nori, F., Metta, G., Fadiga, L., Sandini, G., & Pozzo, T. (2014). Motor contagion during human-human and human–robot interaction. PLOS ONE, 9(8), e106172.  https://doi.org/10.1371/journal.pone.0106172 PubMedCentralPubMedGoogle Scholar
  14. Bonifacci, P., Ricciardelli, P., Lugli, L., & Pellicano, A. (2008). Emotional attention: effects of emotion and gaze direction on overt orienting of visual attention. Cognitive Processing, 9(2), 127–135.  https://doi.org/10.1007/s10339-007-0198-3 PubMedGoogle Scholar
  15. Brothers, L. (2002). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. In J. T. Cacioppo (Ed.), Foundations in social neuroscience (pp. 367–385). Cambridge, MA: MIT Press.Google Scholar
  16. Bzdok, D., Langner, R., Schilbach, L., Engemann, D. A., Laird, A. R., Fox, P. T., & Eickhoff, S. (2013). Segregation of the human medial prefrontal cortex in social cognition. Frontiers in Human Neuroscience, 7, 232.PubMedCentralPubMedGoogle Scholar
  17. Caruana, N., McArthur, G., Woolgar, A., & Brock, J. (2016). Simulating social interactions for the experimental investigation of joint attention. Neuroscience & Biobehavioral Reviews. Retrieved from http://www.sciencedirect.com/science/article/pii/S0149763416304778
  18. Castelli, F., Happé, F., Frith, U., & Frith, C. (2000). Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12(3), 314–325.  https://doi.org/10.1006/nimg.2000.0612 PubMedGoogle Scholar
  19. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583.PubMedGoogle Scholar
  20. Cazzato, V., Liuzza, M. T., Caprara, G. V., Macaluso, E., & Aglioti, S. M. (2015). The attracting power of the gaze of politicians is modulated by the personality and ideological attitude of their voters: A functional magnetic resonance imaging study. The European Journal of Neuroscience, 42(8), 2534–2545.  https://doi.org/10.1111/ejn.13038 PubMedGoogle Scholar
  21. Chaminade, T., & Decety, J. (2002). Leader or follower? Involvement of the inferior parietal lobule in agency. Neuroreport, 13(15), 1975–1978.PubMedGoogle Scholar
  22. Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Social Cognitive and Affective Neuroscience, 2(3), 206–216.  https://doi.org/10.1093/scan/nsm017 PubMedCentralPubMedGoogle Scholar
  23. Chaminade, T., Rosset, D., Da Fonseca, D., Nazarian, B., Lutscher, E., Cheng, G., & Deruelle, C. (2012). How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Frontiers in Human Neuroscience, 6.  https://doi.org/10.3389/fnhum.2012.00103
  24. Chang, C.-F., Hsu, T.-Y., Tseng, P., Liang, W.-K., Tzeng, O. J. L., Hung, D. L., & Juan, C.-H. (2013). Right temporoparietal junction and attentional reorienting. Human Brain Mapping, 34(4), 869–877.  https://doi.org/10.1002/hbm.21476 PubMedGoogle Scholar
  25. Cheetham, M., Suter, P., & Jäncke, L. (2011). The human likeness dimension of the “uncanny valley hypothesis”: Behavioral and functional MRI findings. Frontiers in Human Neuroscience, 5, 126.  https://doi.org/10.3389/fnhum.2011.00126 PubMedCentralPubMedGoogle Scholar
  26. Cheetham, M., Suter, P., & Jancke, L. (2014). Perceptual discrimination difficulty and familiarity in the uncanny valley: More like a “Happy Valley.” Frontiers in Psychology, 5, 1219.  https://doi.org/10.3389/fpsyg.2014.01219 PubMedCentralPubMedGoogle Scholar
  27. Chong, T. T.-J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology: CB, 18(20), 1576–1580.  https://doi.org/10.1016/j.cub.2008.08.068 PubMedGoogle Scholar
  28. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S., (2003). Applied multiple regression/correlation analysis for the behavioral sciences. New York, NY: Routledge.Google Scholar
  29. Contreras, J. M., Banaji, M. R., & Mitchell, J. P. (2012). Dissociable neural correlates of stereotypes and other forms of semantic knowledge. Social Cognitive and Affective Neuroscience, 7(7), 764–770.  https://doi.org/10.1093/scan/nsr053 PubMedGoogle Scholar
  30. Costa, A., Torriero, S., Oliveri, M., & Caltagirone, C. (2008). Prefrontal and temporo-parietal involvement in taking others’ perspective: TMS evidence. Behavioural Neurology, 19(1/2), 71–74.PubMedCentralPubMedGoogle Scholar
  31. Cullen, H., Kanai, R., Bahrami, B., & Rees, G. (2013). Individual differences in anthropomorphic attributions and human brain structure. Social Cognitive and Affective Neuroscience, 9(9),1276–1280. doi:10.1093/scan/nst10Google Scholar
  32. Cushman, F. (2008). Crime and punishment: Distinguishing the roles of causal and intentional analyses in moral judgment. Cognition, 108(2), 353–380.  https://doi.org/10.1016/j.cognition.2008.03.006 PubMedGoogle Scholar
  33. Dalmaso, M., Edwards, S. G., & Bayliss, A. P. (2016). Re-encountering individuals who previously engaged in joint gaze modulates subsequent gaze cueing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(2), 271–284.  https://doi.org/10.1037/xlm0000159 PubMedGoogle Scholar
  34. Decety, J., & Chaminade, T. (2003). When the self represents the other: A new cognitive neuroscience view on psychological identification. Consciousness and Cognition, 12(4), 577–596.  https://doi.org/10.1016/S1053-8100(03)00076-X PubMedGoogle Scholar
  35. Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both observed and executed movements. Journal of Neurophysiology, 98(3), 1415–1427.  https://doi.org/10.1152/jn.00238.2007 PubMedCentralPubMedGoogle Scholar
  36. DiSalvo, C. F., Gemperle, F., Forlizzi, J., & Kiesler, S. (2002). All robots are not created equal: The design and perception of humanoid robot heads. In Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (pp. 321–326). New York, NY: ACM.  https://doi.org/10.1145/778712.778756
  37. Epley, N., Waytz, A., Akalis, S., & Cacioppo, J. T. (2008). When we need a human: Motivational determinants of anthropomorphism. Social Cognition, 26(2), 143–155.  https://doi.org/10.1521/soco.2008.26.2.143 CrossRefGoogle Scholar
  38. Fairhall, S. L., Anzellotti, S., Ubaldi, S., & Caramazza, A. (2014). Person- and place-selective neural substrates for entity-specific semantic access. Cerebral Cortex (New York, N.Y.: 1991), 24(7), 1687–1696.  https://doi.org/10.1093/cercor/bht039
  39. Farrer, C., Franck, N., Georgieff, N., Frith, C. D., Decety, J., & Jeannerod, M. (2003). Modulating the experience of agency: A positron emission tomography study. Neuro Image, 18(2), 324–333.PubMedGoogle Scholar
  40. Fox, E., Mathews, A., Calder, A. J., & Yiend, J. (2007). Anxiety and sensitivity to gaze direction in emotionally expressive faces. Emotion (Washington, D.C.), 7(3), 478–486.  https://doi.org/10.1037/1528-3542.7.3.478 CrossRefGoogle Scholar
  41. Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin & Review, 5(3), 490–495.  https://doi.org/10.3758/BF03208827 CrossRefGoogle Scholar
  42. Friesen, C. K., Ristic, J., & Kingstone, A. (2004). Attentional effects of counterpredictive gaze and arrow cues. Journal of Experimental Psychology: Human Perception and Performance, 30(2), 319–329.  https://doi.org/10.1037/0096-1523.30.2.319 PubMedGoogle Scholar
  43. Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694–724.  https://doi.org/10.1037/0033-2909.133.4.694 PubMedCentralPubMedGoogle Scholar
  44. Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science (New York, N.Y.), 286(5445), 1692–1695.CrossRefGoogle Scholar
  45. Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534.  https://doi.org/10.1016/j.neuron.2006.05.001 PubMedGoogle Scholar
  46. Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10(5), 151–155.CrossRefGoogle Scholar
  47. Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1431), 459–473.  https://doi.org/10.1098/rstb.2002.1218 PubMedCentralPubMedGoogle Scholar
  48. Fussell, S. R., Kiesler, S., Setlock, L. D., & Yew, V. (2008). How people anthropomorphize robots. In 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 145–152).  https://doi.org/10.1145/1349822.1349842
  49. Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of “theory of mind.” Trends in Cognitive Sciences, 7(2), 77–83.PubMedGoogle Scholar
  50. Gallagher, H. L., Happé, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: An fMRI study of “theory of mind” in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11–21.PubMedGoogle Scholar
  51. Gallagher, H. L., Jack, A. I., Roepstorff, A., & Frith, C. D. (2002). Imaging the intentional stance in a competitive game. NeuroImage, 16(3, Pt. 1), 814–821.PubMedGoogle Scholar
  52. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain: A Journal of Neurology, 119(Pt. 2), 593–609.CrossRefGoogle Scholar
  53. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403.  https://doi.org/10.1016/j.tics.2004.07.002 PubMedGoogle Scholar
  54. Gao, T., McCarthy, G., & Scholl, B. J. (2010). The wolfpack effect: Perception of animacy irresistibly influences interactive behavior. Psychological Science, 21(12), 1845–1853.  https://doi.org/10.1177/0956797610388814 PubMedGoogle Scholar
  55. Ghosh, V. E., Moscovitch, M., Melo Colella, B., & Gilboa, A. (2014). Schema representation in patients with ventromedial PFC lesions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(36), 12057–12070.  https://doi.org/10.1523/JNEUROSCI.0740-14.2014 CrossRefGoogle Scholar
  56. Graham, J., & Haidt, J. (2010). Beyond beliefs: Religions bind individuals into moral communities. Personality and Social Psychology Review: An Official Journal of the Society for Personality and Social Psychology, 14(1), 140–150.  https://doi.org/10.1177/1088868309353415 CrossRefGoogle Scholar
  57. Graham, R., Friesen, C. K., Fichtenholtz, H. M., & LaBar, K. S. (2010). Modulation of reflexive orienting to gaze direction by facial expressions. Visual Cognition, 18(3), 331–368.  https://doi.org/10.1080/13506280802689281 CrossRefGoogle Scholar
  58. Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind perception. Science, 315(5812), 619–619.  https://doi.org/10.1126/science.1134475 PubMedGoogle Scholar
  59. Gray, K., & Wegner, D. M. (2008). The sting of intentional pain. Psychological Science, 19(12), 1260–1262.  https://doi.org/10.1111/j.1467-9280.2008.02208.x PubMedGoogle Scholar
  60. Gray, K., Young, L., & Waytz, A. (2012). Mind perception is the essence of morality. Psychological Inquiry, 23(2), 101–124.  https://doi.org/10.1080/1047840X.2012.651387 PubMedCentralPubMedGoogle Scholar
  61. Grèzes, J., Berthoz, S., & Passingham, R. E. (2006). Amygdala activation when one is the target of deceit: Did he lie to you or to someone else? NeuroImage, 30(2), 601–608.  https://doi.org/10.1016/j.neuroimage.2005.09.038 PubMedGoogle Scholar
  62. Grèzes, J., Frith, C., & Passingham, R. E. (2004). Brain mechanisms for inferring deceit in the actions of others. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(24), 5500–5505.  https://doi.org/10.1523/JNEUROSCI.0219-04.2004 CrossRefGoogle Scholar
  63. Hackel, L. M., Looser, C. E., & Van Bavel, J. J. (2014). Group membership alters the threshold for mind perception: The role of social identity, collective identification, and intergroup threat. Journal of Experimental Social Psychology, 52, 15–23.CrossRefGoogle Scholar
  64. Haley, K. J., & Fessler, D. M. T. (2005). Nobody’s watching?: Subtle cues affect generosity in an anonymous economic game. Evolution and Human Behavior, 26(3), 245–256.  https://doi.org/10.1016/j.evolhumbehav.2005.01.002 CrossRefGoogle Scholar
  65. Harris, L. T., & Fiske, S. T. (2006). Dehumanizing the lowest of the low: Neuroimaging responses to extreme out-groups. Psychological Science, 17(10), 847–853.  https://doi.org/10.1111/j.1467-9280.2006.01793.x PubMedGoogle Scholar
  66. Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O’Doherty, J., Bullock, P. R., & Polkey, C. E. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain: A Journal of Neurology, 126(Pt. 7), 1691–1712.  https://doi.org/10.1093/brain/awg168 CrossRefGoogle Scholar
  67. Huang, C. M., & Thomaz, A. L. (2011). Effects of responding to, initiating and ensuring joint attention in human-robot interaction. Paper published in 2011 RO-MAN (pp. 65–71).  https://doi.org/10.1109/ROMAN.2011.6005230
  68. Huey, E. D., Krueger, F., & Grafman, J. (2006). Representations in the human prefrontal cortex. Current Directions in Psychological Science, 15(4), 167–171.CrossRefGoogle Scholar
  69. Hungr, C. J., & Hunt, A. R. (2012). Physical self-similarity enhances the gaze-cueing effect. Quarterly Journal of Experimental Psychology (2006), 65(7), 1250–1259.  https://doi.org/10.1080/17470218.2012.690769 CrossRefGoogle Scholar
  70. Hynes, C. A., Baird, A. A., & Grafton, S. T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44(3), 374–383.  https://doi.org/10.1016/j.neuropsychologia.2005.06.011 PubMedGoogle Scholar
  71. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15(6), 632–637.  https://doi.org/10.1016/j.conb.2005.10.010 PubMedGoogle Scholar
  72. Jenkins, A. C., Macrae, C. N., & Mitchell, J. P. (2008). Repetition suppression of ventromedial prefrontal activity during judgments of self and others. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4507–4512.  https://doi.org/10.1073/pnas.0708785105 PubMedCentralPubMedGoogle Scholar
  73. Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501–507.  https://doi.org/10.1016/j.tics.2004.09.005 PubMedGoogle Scholar
  74. Kiesler, S., Powers, A., Fussell, S. R., & Torrey, C. (2008). Anthropomorphic interactions with a robot and robot-like agent. Social Cognition, 26(2), 169.CrossRefGoogle Scholar
  75. Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(32), 10153–10159.  https://doi.org/10.1523/JNEUROSCI.2668-09.2009 CrossRefGoogle Scholar
  76. Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology: CB, 13(6), 522–525.PubMedGoogle Scholar
  77. Konishi, S., & Kitagawa, G. (2008). Information criteria and statistical modeling. New York, NY: Springer Science & Business Media. Retrieved from https://books.google.com/books?hl=en&lr=&id=3I9ZJusaYh0C&oi=fnd&pg=PA1&dq=Konishi+%26+Kitagawa,+2008&ots=Y_S1YyHleU&sig=6HHmYgfK5xgLLn0FrOqLohteqOA CrossRefGoogle Scholar
  78. Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., & Kircher, T. (2008). Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLOS ONE, 3(7), e2597.PubMedCentralPubMedGoogle Scholar
  79. Krall, S. C., Rottschy, C., Oberwelland, E., Bzdok, D., Fox, P. T., Eickhoff, S. B., . . . Konrad, K. (2015). The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Structure and Function, 220(2), 587–604.Google Scholar
  80. Krall, S. C., Volz, L. J., Oberwelland, E., Grefkes, C., Fink, G. R., & Konrad, K. (2016). The right temporoparietal junction in attention and social interaction: A transcranial magnetic stimulation study. Human Brain Mapping, 37(2), 796–807.PubMedGoogle Scholar
  81. Kupferberg, A., Huber, M., Helfer, B., Lenz, C., Knoll, A., & Glasauer, S. (2012). Moving just like you: Motor interference depends on similar motility of agent and observer. PLOS ONE, 7(6), e39637.  https://doi.org/10.1371/journal.pone.0039637 PubMedCentralPubMedGoogle Scholar
  82. Leslie, A. M., Friedman, O., & German, T. P. (2004). Core mechanisms in “theory of mind.” Trends in Cognitive Sciences, 8(12), 528–533.  https://doi.org/10.1016/j.tics.2004.10.001 PubMedGoogle Scholar
  83. Looser, C. E., & Wheatley, T. (2010). The tipping point of animacy how, when, and where we perceive life in a face. Psychological Science, 21(12), 1854–1862.PubMedGoogle Scholar
  84. Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces (KDEF) (CD-ROM, 91–630). Solna, Sweden: Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet.Google Scholar
  85. Mackinnon, D., Krull, J., & Lockwood, C. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1(4), 173–181.  https://doi.org/10.1023/A1026595011371 PubMedCentralPubMedGoogle Scholar
  86. Martini, M. C., Gonzalez, C. A., & Wiese, E. (2016). Seeing minds in others–Can agents with robotic appearance have human-like preferences? PLOS ONE, 11(1), e0146310.PubMedCentralPubMedGoogle Scholar
  87. McCabe, K., Houser, D., Ryan, L., Smith, V., & Trouard, T. (2001). A functional imaging study of cooperation in two-person reciprocal exchange. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11832–11835.  https://doi.org/10.1073/pnas.211415698 PubMedCentralPubMedGoogle Scholar
  88. Mitchell, J. P. (2008). Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex, 18(2), 262–271.PubMedGoogle Scholar
  89. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2004). Encoding-specific effects of social cognition on the neural correlates of subsequent memory. Journal of Neuroscience, 24(21), 4912–4917.  https://doi.org/10.1523/JNEUROSCI.0481-04.2004 PubMedGoogle Scholar
  90. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655–663.  https://doi.org/10.1016/j.neuron.2006.03.040 PubMedGoogle Scholar
  91. Mori, M. (1970). The uncanny valley. Energy, 7(4), 33–35.Google Scholar
  92. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology: CB, 20(8), 750–756.  https://doi.org/10.1016/j.cub.2010.02.045 PubMedGoogle Scholar
  93. Mutlu, B., Forlizzi, J., & Hodgins, J. (2006). A storytelling robot: Modeling and evaluation of human-like gaze behavior. In 2006 6th IEEE-RAS International Conference on Humanoid Robots (pp. 518–523).  https://doi.org/10.1109/ICHR.2006.321322
  94. Mutlu, B., Kanda, T., Forlizzi, J., Hodgins, J., & Ishiguro, H. (2012). Conversational gaze mechanisms for humanlike robots. ACM Transactions on Interactive Intelligent Systems, 1(2), 12:1–12:33.  https://doi.org/10.1145/2070719.2070725 CrossRefGoogle Scholar
  95. Nummenmaa, L., & Calder, A. J. (2009). Neural mechanisms of social attention. Trends in Cognitive Sciences, 13(3), 135–143.  https://doi.org/10.1016/j.tics.2008.12.006 PubMedGoogle Scholar
  96. Oberman, L. M., McCleery, J. P., Ramachandran, V. S., & Pineda, J. A. (2007). EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing, 70(13), 2194–2203.  https://doi.org/10.1016/j.neucom.2006.02.024 CrossRefGoogle Scholar
  97. Ohnishi, T., Moriguchi, Y., Matsuda, H., Mori, T., Hirakata, M., Imabayashi, E., . . . Uno, A. (2004). The neural network for the mirror system and mentalizing in normally developed children: An fMRI study. Neuroreport, 15(9), 1483–1487.Google Scholar
  98. Ohtsubo, Y. (2007). Perceived intentionality intensifies blameworthiness of negative behaviors: Blame-praise asymmetry in intensification effect. Japanese Psychological Research, 49(2), 100–110.  https://doi.org/10.1111/j.1468-5884.2007.00337.x CrossRefGoogle Scholar
  99. Özdem, C., Wiese, E., Wykowska, A., Müller, H., Brass, M., & Overwalle, F. V. (2016). Believing androids—fMRI activation in the right temporo-parietal junction is modulated by ascribing intentions to non-human agents. Social Neuroscience, 2(5), 582–593.  https://doi.org/10.1080/17470919.2016.1207702 CrossRefGoogle Scholar
  100. Oztop, E., Franklin, D. W., Chaminade, T., & Cheng, G. (2005). Human–humanoid interaction: Is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2(4), 537–559.  https://doi.org/10.1142/S0219843605000582 CrossRefGoogle Scholar
  101. Park, S., & Catrambone, R. (2007). Social facilitation effects of virtual humans. Human Factors, 49(6), 1054–1060.  https://doi.org/10.1518/001872007X249910 PubMedGoogle Scholar
  102. Perner, J., Aichhorn, M., Kronbichler, M., Staffen, W., & Ladurner, G. (2006). Thinking of mental and other representations: The roles of left and right temporo-parietal junction. Social Neuroscience, 1(3/4), 245–258.  https://doi.org/10.1080/17470910600989896 PubMedGoogle Scholar
  103. Pfeiffer, U. J., Schilbach, L., Timmermans, B., Kuzmanovic, B., Georgescu, A. L., Bente, G., & Vogeley, K. (2014). Why we interact: On the functional role of the striatum in the subjective experience of social interaction. NeuroImage, 101, 124–137.  https://doi.org/10.1016/j.neuroimage.2014.06.061 PubMedGoogle Scholar
  104. Pfeiffer, U. J., Timmermans, B., Bente, G., Vogeley, K., & Schilbach, L. (2011). A non-verbal Turing test: Differentiating mind from machine in gaze-based social interaction. PLOS ONE, 6(11), e27591.  https://doi.org/10.1371/journal.pone.0027591 PubMedCentralPubMedGoogle Scholar
  105. Pfeiffer-Leßmann, N., Pfeiffer, T., & Wachsmuth, I. (2018). An operational model of joint attention—Timing of gaze patterns in interactions between humans and a virtual human. http://mindmodeling.org/cogsci2012/
  106. Pobric, G., & de Hamilton, A. F. C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology: CB, 16(5), 524–529.  https://doi.org/10.1016/j.cub.2006.01.033 PubMedGoogle Scholar
  107. Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Brain Research. Cognitive Brain Research, 25(3), 632–640.  https://doi.org/10.1016/j.cogbrainres.2005.08.020 PubMedGoogle Scholar
  108. Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society B: Biological Sciences, 274(1625), 2509–2514.  https://doi.org/10.1098/rspb.2007.0774 PubMedGoogle Scholar
  109. Riether, N., Hegel, F., Wrede, B., & Horstmann, G. (2012). Social facilitation with social robots? In 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 41–47).  https://doi.org/10.1145/2157689.2157697
  110. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.  https://doi.org/10.1146/annurev.neuro.27.070203.144230 PubMedGoogle Scholar
  111. Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A PET investigation of agency. Nature Neuroscience, 4(5), 546–550.PubMedGoogle Scholar
  112. Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7(5), 499–500.PubMedGoogle Scholar
  113. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science (New York, N.Y.), 300(5626), 1755–1758.  https://doi.org/10.1126/science.1082976 CrossRefGoogle Scholar
  114. Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16(2), 235–239.PubMedGoogle Scholar
  115. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind.” NeuroImage, 19(4), 1835–1842.PubMedGoogle Scholar
  116. Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological Science, 17(8), 692–699.  https://doi.org/10.1111/j.1467-9280.2006.01768.x PubMedGoogle Scholar
  117. Saxe, R., & Wexler, A. (2005). Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia, 43(10), 1391–1399.PubMedGoogle Scholar
  118. Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain: A Journal of Neurology, 130(Pt. 9), 2452–2461.  https://doi.org/10.1093/brain/awm162 CrossRefGoogle Scholar
  119. Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2012). The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience, 7(4), 413–422.  https://doi.org/10.1093/scan/nsr025 PubMedGoogle Scholar
  120. Saygin, A. P., Wilson, S. M., Hagler, D. J., Bates, E., & Sereno, M. I. (2004). Point-light biological motion perception activates human premotor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(27), 6181–6188.  https://doi.org/10.1523/JNEUROSCI.0504-04.2004 CrossRefGoogle Scholar
  121. Scholz, J., Triantafyllou, C., Whitfield-Gabrieli, S., Brown, E. N., & Saxe, R. (2009). Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLOS ONE, 4(3), e4869.PubMedCentralPubMedGoogle Scholar
  122. Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain: A Journal of Neurology, 132(Pt. 3), 617–627.  https://doi.org/10.1093/brain/awn279 CrossRefGoogle Scholar
  123. Shariff, A. F., & Norenzayan, A. (2007). God is watching you: Priming God concepts increases prosocial behavior in an anonymous economic game. Psychological Science, 18(9), 803–809.  https://doi.org/10.1111/j.1467-9280.2007.01983.x PubMedGoogle Scholar
  124. Sidner, C. L., Kidd, C. D., Lee, C., & Lesh, N. (2004). Where to look: A study of human-robot engagement. In In Proceedings of In℡ligent User Interfaces (pp. 78–84). New York, NY: ACM Press.Google Scholar
  125. Spunt, R. P., Meyer, M. L., & Lieberman, M. D. (2015). The default mode of human brain function primes the intentional stance. Journal of Cognitive Neuroscience, 27(6), 1116–1124.  https://doi.org/10.1162/jocn_a_00785 PubMedGoogle Scholar
  126. Staudte, M., & Crocker, M. W. (2011). Investigating joint attention mechanisms through spoken human-robot interaction. Cognition, 120(2), 268–291. doi:10.1016/j.cognition.2011.05.005Google Scholar
  127. Stone, V. E., Baron-Cohen, S., & Knight, R. T. (1998). Frontal lobe contributions to theory of mind. Journal of Cognitive Neuroscience, 10(5), 640–656.PubMedGoogle Scholar
  128. Szczepanski, S. M., & Knight, R. T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83(5), 1002–1018.  https://doi.org/10.1016/j.neuron.2014.08.011 PubMedCentralPubMedGoogle Scholar
  129. Teufel, C., Alexis, D. M., Todd, H., Lawrance-Owen, A. J., Clayton, N. S., & Davis, G. (2009). Social cognition modulates the sensory coding of observed gaze direction. Current Biology, 19(15), 1274–1277.PubMedGoogle Scholar
  130. Tipples, J. (2006). Fear and fearfulness potentiate automatic orienting to eye gaze. Cognition and Emotion, 20(2), 309–320.  https://doi.org/10.1080/02699930500405550 CrossRefGoogle Scholar
  131. Tsuchida, A., & Fellows, L. K. (2012). Are you upset? Distinct roles for orbitofrontal and lateral prefrontal cortex in detecting and distinguishing facial expressions of emotion. Cerebral Cortex (New York, N.Y.: 1991), 22(12), 2904–2912.  https://doi.org/10.1093/cercor/bhr370 CrossRefGoogle Scholar
  132. Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing. a neurophysiological study. Neuron, 31(1), 155–165.PubMedGoogle Scholar
  133. van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211–219.  https://doi.org/10.1016/j.tins.2012.02.001 PubMedGoogle Scholar
  134. Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858.  https://doi.org/10.1002/hbm.20547 PubMedGoogle Scholar
  135. Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584.PubMedGoogle Scholar
  136. Völlm, B. A., Taylor, A. N. W., Richardson, P., Corcoran, R., Stirling, J., McKie, S., . . . Elliott, R. (2006). Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task. NeuroImage, 29(1), 90–98.  https://doi.org/10.1016/j.neuroimage.2005.07.022
  137. Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2011). Individual differences in the spontaneous recruitment of brain regions supporting mental state understanding when viewing natural social scenes. Cerebral Cortex, 21(12), 2788–2796.  https://doi.org/10.1093/cercor/bhr074 PubMedGoogle Scholar
  138. Wang, Y., & Quadflieg, S. (2015). In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions. Social Cognitive and Affective Neuroscience, 10(11), 1515–1524.  https://doi.org/10.1093/scan/nsv043 PubMedCentralPubMedGoogle Scholar
  139. Weis, P. P., & Wiese, E. (2017). Cognitive conflict as possible origin of the Uncanny Valley. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61(1), 1599–1603.  https://doi.org/10.1177/1541931213601763 CrossRefGoogle Scholar
  140. Wheatley, T., Weinberg, A., Looser, C., Moran, T., & Hajcak, G. (2011). Mind perception: Real but not artificial faces sustain neural activity beyond the N170/VPP. PLOS ONE, 6(3), e17960.PubMedCentralPubMedGoogle Scholar
  141. Wiese, E., Metta, G., & Wykowska, A. (2017). Robots as intentional agents: Using neuroscientific methods to make robots appear more social. Frontiers in Psychology, 8, 1663.  https://doi.org/10.3389/fpsyg.2017.01663 PubMedCentralPubMedGoogle Scholar
  142. Wiese, E., Wykowska, A., & Müller, H. J. (2014). What we observe is biased by what other people tell us: Beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues. PLOS ONE, 9(4), e94529.  https://doi.org/10.1371/journal.pone.0094529 PubMedCentralPubMedGoogle Scholar
  143. Wiese, E., Wykowska, A., Zwickel, J., & Müller, H. J. (2012). I see what you mean: How attentional selection is shaped by ascribing intentions to others. PLOS ONE, 7(9), e45391.PubMedCentralPubMedGoogle Scholar
  144. Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: processing and representational perspectives. Nature Reviews Neuroscience, 4(2), 139–147.PubMedGoogle Scholar
  145. Woods, S., Dautenhahn, K., & Kaouri, C. (2005). Is someone watching me? Consideration of social facilitation effects in human-robot interaction experiments. In 2005 International Symposium on Computational Intelligence in Robotics and Automation (pp. 53–60).  https://doi.org/10.1109/CIRA.2005.1554254
  146. Wykowska, A., Wiese, E., Prosser, A., & Müller, H. J. (2014). Beliefs about the minds of others influence how we process sensory information. PLOS ONE, 9(4), e94339.PubMedCentralPubMedGoogle Scholar
  147. Yamazaki, A., Yamazaki, K., Burdelski, M., Kuno, Y., & Fukushima, M. (2010). Coordination of verbal and non-verbal actions in human–robot interaction at museums and exhibitions. Journal of Pragmatics, 42(9), 2398–2414.  https://doi.org/10.1016/j.pragma.2009.12.023 CrossRefGoogle Scholar
  148. Zink, C. F., Kempf, L., Hakimi, S., Rainey, C. A., Stein, J. L., & Meyer-Lindenberg, A. (2011). Vasopressin modulates social recognition-related activity in the left temporoparietal junction in humans. Translational Psychiatry, 1(4), e3.PubMedCentralPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Eva Wiese
    • 1
  • George A. Buzzell
    • 1
  • Abdulaziz Abubshait
    • 1
  • Paul J. Beatty
    • 1
  1. 1.Psychology DepartmentGeorge Mason UniversityFairfaxUSA

Personalised recommendations